Application of Bayesian approaches in drug development: starting a virtuous cycle

频数推理 贝叶斯概率 药物开发 计算机科学 风险分析(工程) 临床试验 过程(计算) 数据科学 贝叶斯推理 机器学习 数据挖掘 医学 药品 人工智能 药理学 病理 操作系统
作者
Stephen J. Ruberg,F. Beckers,Rob Hemmings,Peter K. Honig,Telba Irony,Lisa M. LaVange,Grazyna Liebérman,James Mayne,Richard Moscicki
出处
期刊:Nature Reviews Drug Discovery [Nature Portfolio]
卷期号:22 (3): 235-250 被引量:49
标识
DOI:10.1038/s41573-023-00638-0
摘要

The pharmaceutical industry and its global regulators have routinely used frequentist statistical methods, such as null hypothesis significance testing and p values, for evaluation and approval of new treatments. The clinical drug development process, however, with its accumulation of data over time, can be well suited for the use of Bayesian statistical approaches that explicitly incorporate existing data into clinical trial design, analysis and decision-making. Such approaches, if used appropriately, have the potential to substantially reduce the time and cost of bringing innovative medicines to patients, as well as to reduce the exposure of patients in clinical trials to ineffective or unsafe treatment regimens. Nevertheless, despite advances in Bayesian methodology, the availability of the necessary computational power and growing amounts of relevant existing data that could be used, Bayesian methods remain underused in the clinical development and regulatory review of new therapies. Here, we highlight the value of Bayesian methods in drug development, discuss barriers to their application and recommend approaches to address them. Our aim is to engage stakeholders in the process of considering when the use of existing data is appropriate and how Bayesian methods can be implemented more routinely as an effective tool for doing so.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACE发布了新的文献求助10
刚刚
刚刚
2秒前
2秒前
3秒前
火星上芹完成签到,获得积分20
3秒前
zhongbo发布了新的文献求助10
3秒前
Wakeupsn发布了新的文献求助10
4秒前
单忘幽完成签到,获得积分10
5秒前
hanch完成签到,获得积分20
6秒前
orixero应助ACE采纳,获得10
7秒前
FashionBoy应助luckly采纳,获得10
8秒前
斯文败类应助IT小师弟采纳,获得10
9秒前
铠甲勇士完成签到,获得积分10
9秒前
9秒前
乐乐应助和谐幻柏采纳,获得10
9秒前
12秒前
13秒前
13秒前
13秒前
yjj6809完成签到,获得积分10
14秒前
Ava应助yuanjie采纳,获得10
15秒前
川蜀帅气挖矿男完成签到,获得积分10
15秒前
夜莺应助Wakeupsn采纳,获得10
15秒前
16秒前
yanghuanyu完成签到 ,获得积分10
16秒前
17秒前
19秒前
充电宝应助怕黑鑫采纳,获得10
19秒前
Cccsy完成签到 ,获得积分10
19秒前
IT小师弟发布了新的文献求助10
21秒前
Rainielove0215完成签到,获得积分0
21秒前
开放的可冥完成签到,获得积分10
21秒前
过期牛奶坏肚子完成签到,获得积分10
22秒前
23秒前
果冻发布了新的文献求助20
24秒前
十一完成签到,获得积分10
25秒前
情怀应助SanXing三醒采纳,获得10
26秒前
26秒前
王11应助bingbing采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096447
求助须知:如何正确求助?哪些是违规求助? 4309168
关于积分的说明 13426309
捐赠科研通 4136267
什么是DOI,文献DOI怎么找? 2266010
邀请新用户注册赠送积分活动 1269252
关于科研通互助平台的介绍 1205492