Remedy or Resource Drain: Modeling and Analysis of Massive Task Offloading Processes in Fog

计算机科学 服务器 任务(项目管理) 资源(消歧) 延迟(音频) 节点(物理) 计算 分布式计算 计算机网络 算法 电信 管理 结构工程 工程类 经济
作者
Jie Wang,Wenye Wang,Cliff Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (13): 11669-11682
标识
DOI:10.1109/jiot.2023.3245100
摘要

Task offloading, which refers to processing (computation-intensive) data at facilitating servers, is an exemplary service that greatly benefits from the fog computing paradigm, which brings computation resources to the edge network for reduced application latency. However, the resource-consuming nature of task execution, as well as the sheer scale of IoT systems, raises an open and challenging question: whether fog is a remedy or a resource drain, considering frequent and massive offloading operations? This question is nontrivial, because participants of offloading processes, i.e., fog nodes, may have diversified technical specifications, while task generators, i.e., task nodes, may employ a variety of criteria to select offloading targets, resulting in an unmanageable space for performance evaluation. To overcome these challenges of heterogeneity, we propose a gravity model that characterizes offloading criteria with various gravity functions, in which individual/system resource consumption can be examined by the device/network effort metrics, respectively. Simulation results show that the proposed gravity model can flexibly describe different offloading schemes in terms of application and node-level behavior. We find that the expected lifetime and device effort of individual tasks decrease as $O({}{1}/{N})$ over the network size $N$ , while the network effort decreases much slower, even remain $O(1)$ when load balancing measures are employed, indicating a possible resource drain in the edge network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
NexusExplorer应助XX采纳,获得10
3秒前
华仔应助高挑的梦芝采纳,获得10
3秒前
踏实无极发布了新的文献求助10
4秒前
洁净无心发布了新的文献求助10
4秒前
持续破壳唐女士完成签到,获得积分20
4秒前
5秒前
6秒前
英姑应助Betty采纳,获得30
6秒前
6秒前
医学狼发布了新的文献求助50
7秒前
7秒前
7秒前
勿忘9451发布了新的文献求助10
7秒前
nice1025完成签到,获得积分10
7秒前
8秒前
布坎南发布了新的文献求助10
9秒前
9秒前
SYLH应助云川采纳,获得10
9秒前
草履虫完成签到,获得积分10
10秒前
11秒前
汉堡包应助龙行天下采纳,获得10
11秒前
GGBOND完成签到,获得积分10
12秒前
别催我好么发布了新的文献求助150
12秒前
faye完成签到,获得积分20
12秒前
甜馨发布了新的文献求助10
13秒前
沉默发布了新的文献求助10
14秒前
dasfdufos发布了新的文献求助30
14秒前
14秒前
勿忘9451完成签到,获得积分10
16秒前
19秒前
阿叶同学完成签到,获得积分10
19秒前
SYLH应助旷野采纳,获得10
19秒前
sunchaoyue发布了新的文献求助10
19秒前
myp完成签到,获得积分10
20秒前
思源应助持续破壳唐女士采纳,获得30
20秒前
22秒前
adobe完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819042
求助须知:如何正确求助?哪些是违规求助? 3362124
关于积分的说明 10415640
捐赠科研通 3080439
什么是DOI,文献DOI怎么找? 1694471
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768382