U-Net Based Estimation of Functional Connectivity from Time Series Multi-Channel EEG from Schizophrenia Patients

脑电图 判别式 人工智能 精神分裂症(面向对象编程) 计算机科学 模式识别(心理学) 神经影像学 大脑活动与冥想 深度学习 神经科学 心理学 程序设计语言
作者
Alireza Khodabakhsh,Hossein Arabi,Habib Zaidi
标识
DOI:10.1109/nss/mic44867.2021.9875427
摘要

Human brain, as a complex network, is affected by many mental disorders and neurodegenerative diseases. Brain functional and structural alteration could be captured by imaging modalities such as CT and MR imaging. However, these modalities have low sensitivity to properly capture the brain connectivity map as a biomarker for the early diagnosis of neurodegenerative diseases. In this light, complimentary examination tools (such as EEG) are employed to estimate the brain functional connectivity (FC) map. To decode the brain FC map from EEG signals, conventional approaches rely on hand-craft feature extraction, leading to suboptimal performance/effectiveness. In this light, this work set out to implement a novel deep neural network based on U-Net to extract the brain FC maps and identify (based on the obtained FC map) the type of neurodegenerative disease from the patient's EEG signals. Due to the absence of the ground truth brain FC maps, the proposed approach extracts the patient-specific brain FC maps in an unsupervised approach. To evaluate the performance of the proposed deep learning model, a publicly available dataset of EEG signals from healthy control and schizophrenia patients was employed. The proposed model exhibited an accuracy of 94.11% to classify schizophrenia patients. Moreover, the estimated brain FC maps for both healthy control and schizophrenia patients exhibited highly discriminative patterns to differentiate abnormalities from the healthy controls. The proposed unsupervised model, which is applicable to EEG and functional MR data, exhibited promising performance to extract brain FC maps and classify neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
凣凢完成签到,获得积分10
2秒前
科研通AI5应助世界和平采纳,获得10
2秒前
3秒前
善学以致用应助宋ke采纳,获得10
3秒前
Transecond完成签到,获得积分20
3秒前
山山而川发布了新的文献求助10
4秒前
豆沙包完成签到,获得积分10
4秒前
4秒前
在水一方应助YYMM采纳,获得10
5秒前
科研通AI5应助盛夏如花采纳,获得10
5秒前
violet_119完成签到,获得积分10
6秒前
制冷剂发布了新的文献求助10
6秒前
kingwill举报狂飙的蛋求助涉嫌违规
7秒前
Transecond发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助仰卧起坐采纳,获得10
8秒前
9秒前
9秒前
sby发布了新的文献求助30
9秒前
红莲墨生发布了新的文献求助10
9秒前
胸大无肌完成签到,获得积分10
10秒前
研友_VZG7GZ应助能干耳机采纳,获得10
10秒前
完美世界应助dd采纳,获得10
10秒前
研友_VZG7GZ应助nicole采纳,获得10
10秒前
haha完成签到,获得积分10
11秒前
阴晴完成签到,获得积分10
12秒前
天天快乐应助荀沛珊采纳,获得10
12秒前
科目三应助哈哈哈哈采纳,获得10
13秒前
李Sir发布了新的文献求助10
13秒前
14秒前
14秒前
红莲墨生完成签到,获得积分10
14秒前
一颗煎蛋发布了新的文献求助10
15秒前
科研通AI5应助世界和平采纳,获得10
17秒前
17秒前
sby完成签到,获得积分20
18秒前
斯文的灵雁完成签到,获得积分10
19秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608