3D‐Printed Functional Hydrogel by DNA‐Induced Biomineralization for Accelerated Diabetic Wound Healing

3d打印 伤口愈合 自愈水凝胶 材料科学 生物医学工程 生物矿化 化学 医学 外科 化学工程 工程类 高分子化学
作者
Nahyun Kim,Hyun Lee,Ginam Han,Min‐Ho Kang,Sinwoo Park,Dong Eung Kim,Minyoung Lee,Moon‐Jo Kim,Yuhyun Na,SeKwon Oh,Seo‐Jun Bang,Tae‐Sik Jang,Hyoun‐Ee Kim,Jungwon Park,Su Ryon Shin,Hyun‐Do Jung
出处
期刊:Advanced Science [Wiley]
卷期号:10 (17) 被引量:80
标识
DOI:10.1002/advs.202300816
摘要

Chronic wounds in diabetic patients are challenging because their prolonged inflammation makes healing difficult, thus burdening patients, society, and health care systems. Customized dressing materials are needed to effectively treat such wounds that vary in shape and depth. The continuous development of 3D-printing technology along with artificial intelligence has increased the precision, versatility, and compatibility of various materials, thus providing the considerable potential to meet the abovementioned needs. Herein, functional 3D-printing inks comprising DNA from salmon sperm and DNA-induced biosilica inspired by marine sponges, are developed for the machine learning-based 3D-printing of wound dressings. The DNA and biomineralized silica are incorporated into hydrogel inks in a fast, facile manner. The 3D-printed wound dressing thus generates provided appropriate porosity, characterized by effective exudate and blood absorption at wound sites, and mechanical tunability indicated by good shape fidelity and printability during optimized 3D printing. Moreover, the DNA and biomineralized silica act as nanotherapeutics, enhancing the biological activity of the dressings in terms of reactive oxygen species scavenging, angiogenesis, and anti-inflammation activity, thereby accelerating acute and diabetic wound healing. These bioinspired 3D-printed hydrogels produce using a DNA-induced biomineralization strategy are an excellent functional platform for clinical applications in acute and chronic wound repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lysong发布了新的文献求助20
刚刚
刚刚
1秒前
1秒前
1秒前
氧泡泡完成签到,获得积分10
1秒前
Gzdaigzn完成签到,获得积分10
2秒前
玄音发布了新的文献求助10
2秒前
务实的筝完成签到,获得积分10
3秒前
倦9909发布了新的文献求助10
3秒前
汤飞柏发布了新的文献求助10
4秒前
aodilee完成签到,获得积分10
4秒前
苗条发箍完成签到,获得积分20
4秒前
天天快乐应助薄荷之夏采纳,获得10
5秒前
Joyguo完成签到,获得积分20
6秒前
阿程发布了新的文献求助10
7秒前
霉小欧完成签到,获得积分10
7秒前
疯狂的虔完成签到,获得积分10
9秒前
10秒前
tao发布了新的文献求助20
10秒前
10秒前
斯文败类应助甜美的芷采纳,获得10
12秒前
科研通AI5应助punchline采纳,获得10
13秒前
13秒前
紫丁香发布了新的文献求助60
13秒前
13秒前
现代雪柳完成签到 ,获得积分10
13秒前
13秒前
mihaoran发布了新的文献求助10
14秒前
Cc完成签到,获得积分10
14秒前
香蕉觅云应助gzf采纳,获得10
14秒前
14秒前
开心发卡关注了科研通微信公众号
16秒前
等豆宝儿发布了新的文献求助10
16秒前
chen完成签到,获得积分10
19秒前
英姑应助优美的海秋采纳,获得10
19秒前
19秒前
思源应助吾日三省吾身采纳,获得10
19秒前
可爱的函函应助倪吉旭采纳,获得10
19秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826018
求助须知:如何正确求助?哪些是违规求助? 3368368
关于积分的说明 10450432
捐赠科研通 3087859
什么是DOI,文献DOI怎么找? 1698821
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065