AI Transformers for Radiation Dose Reduction in Serial Whole-Body PET Scans

医学 核医学 辐射剂量 医学物理学 放射科
作者
Yan-Ran Wang,Liangqiong Qu,Natasha D. Sheybani,Xiaolong Luo,Jiangshan Wang,K. Elizabeth Hawk,Ashok J. Theruvath,Sergios Gatidis,Xue‐Rong Xiao,Allison Pribnow,Daniel L. Rubin,Heike E. Daldrup‐Link
出处
期刊:Radiology [Radiological Society of North America]
卷期号:5 (3) 被引量:8
标识
DOI:10.1148/ryai.220246
摘要

To develop a deep learning approach that enables ultra-low-dose, 1% of the standard clinical dosage (3 MBq/kg), ultrafast whole-body PET reconstruction in cancer imaging.In this Health Insurance Portability and Accountability Act-compliant study, serial fluorine 18-labeled fluorodeoxyglucose PET/MRI scans of pediatric patients with lymphoma were retrospectively collected from two cross-continental medical centers between July 2015 and March 2020. Global similarity between baseline and follow-up scans was used to develop Masked-LMCTrans, a longitudinal multimodality coattentional convolutional neural network (CNN) transformer that provides interaction and joint reasoning between serial PET/MRI scans from the same patient. Image quality of the reconstructed ultra-low-dose PET was evaluated in comparison with a simulated standard 1% PET image. The performance of Masked-LMCTrans was compared with that of CNNs with pure convolution operations (classic U-Net family), and the effect of different CNN encoders on feature representation was assessed. Statistical differences in the structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and visual information fidelity (VIF) were assessed by two-sample testing with the Wilcoxon signed rank t test.The study included 21 patients (mean age, 15 years ± 7 [SD]; 12 female) in the primary cohort and 10 patients (mean age, 13 years ± 4; six female) in the external test cohort. Masked-LMCTrans-reconstructed follow-up PET images demonstrated significantly less noise and more detailed structure compared with simulated 1% extremely ultra-low-dose PET images. SSIM, PSNR, and VIF were significantly higher for Masked-LMCTrans-reconstructed PET (P < .001), with improvements of 15.8%, 23.4%, and 186%, respectively.Masked-LMCTrans achieved high image quality reconstruction of 1% low-dose whole-body PET images.Keywords: Pediatrics, PET, Convolutional Neural Network (CNN), Dose Reduction Supplemental material is available for this article. © RSNA, 2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助信徒采纳,获得10
2秒前
lily发布了新的文献求助10
2秒前
4秒前
4秒前
深情安青应助夏侯德东采纳,获得10
5秒前
8秒前
欣欣发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
鳄鱼完成签到,获得积分10
11秒前
丘比特应助不吃香菜采纳,获得10
11秒前
sunliyan发布了新的文献求助10
12秒前
科研通AI2S应助yy采纳,获得10
12秒前
云汐发布了新的文献求助10
14秒前
MA发布了新的文献求助10
14秒前
专注刺猬完成签到,获得积分10
14秒前
15秒前
wanci应助Valars采纳,获得10
15秒前
16秒前
16秒前
wanci应助黄辉冯采纳,获得10
17秒前
19秒前
20秒前
儒雅的豁发布了新的文献求助10
21秒前
21秒前
完美世界应助djbj2022采纳,获得20
21秒前
22秒前
22秒前
Yxy2021完成签到 ,获得积分10
23秒前
谨慎建辉发布了新的文献求助10
25秒前
多金发布了新的文献求助10
25秒前
26秒前
研友_VZG7GZ应助乐观的以蕊采纳,获得10
26秒前
linkman发布了新的文献求助30
26秒前
云汐完成签到,获得积分10
27秒前
28秒前
ding应助sunliyan采纳,获得10
28秒前
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165713
求助须知:如何正确求助?哪些是违规求助? 3701390
关于积分的说明 11685746
捐赠科研通 3390066
什么是DOI,文献DOI怎么找? 1859214
邀请新用户注册赠送积分活动 919574
科研通“疑难数据库(出版商)”最低求助积分说明 832196