亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusing features of speech for depression classification based on higher-order spectral analysis

支持向量机 计算机科学 人工智能 卷积神经网络 特征提取 特征(语言学) 机器学习 k-最近邻算法 模式识别(心理学) 语音识别 语言学 哲学
作者
Miao Xiao-lin,Yao Li,Min Wen,Yongyan Liu,Ibegbu Nnamdi Julian,Hao Guo
出处
期刊:Speech Communication [Elsevier BV]
卷期号:143: 46-56 被引量:16
标识
DOI:10.1016/j.specom.2022.07.006
摘要

Approximately 300 million people worldwide suffer from depression, and more than 60% of psychiatric patients do not have access to mental health services due to the shortage of psychiatrists and the high costs associated with clinical diagnosis and treatment. Correct and efficient diagnosis of depression can help overcome these straits. Automatic detection of depressive symptoms can help improve the accuracy and availability of diagnosis. In this paper, a fusion feature for Bispectral Features and Bicoherent Features by using higher-order spectral analysis. Experiments were performed on the Depression Sub-Challenge Dataset of the Audio/Visual Emotion Challenge 2017. The fusion feature fuses higher-order spectral features and traditional speech features with classification weights greater than 100 extracted by using A Collaborative Voice Analysis Repository. The support vector machine and k-nearest neighbor classification algorithms were used as the traditional machine learning models, and the convolutional neural network was used as the deep learning model to verify the proposed features. The experimental results show that under the support vector machine algorithm, the accuracies of extraction of speech-related features by using a collaborative voice analysis repository, The higher-order spectral analysis, and their fusion features were 63.15%, 68.42%, and 73.68%, respectively. Under the k-nearest neighbor classification algorithms model algorithm, the corresponding accuracies were 68.18%, 72.73%, and 77.27%, respectively. For the convolutional neural network model, the corresponding accuracies were 70%, 77%, and 85%, respectively. The results demonstrate that the fusion feature recognition accuracy is high and can be employed to improve the accuracy of depression identification by using traditional machine learning and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
9秒前
柴yuki完成签到 ,获得积分10
41秒前
wangwang完成签到 ,获得积分10
49秒前
Invincible完成签到 ,获得积分10
1分钟前
3分钟前
YY发布了新的文献求助10
3分钟前
YY完成签到,获得积分10
3分钟前
王波完成签到 ,获得积分10
3分钟前
liwang9301完成签到,获得积分10
4分钟前
4分钟前
4分钟前
糊涂的清醒者完成签到,获得积分10
4分钟前
4分钟前
岚12完成签到 ,获得积分10
5分钟前
guowu完成签到 ,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
8分钟前
失眠思远发布了新的文献求助10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
wangkongxinglang完成签到,获得积分10
10分钟前
lanbing802发布了新的文献求助10
10分钟前
张桓完成签到,获得积分10
11分钟前
研友_n2JMKn完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
科研Mayormm完成签到 ,获得积分10
13分钟前
Li应助科研通管家采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
快乐排骨汤完成签到 ,获得积分10
14分钟前
Nola完成签到 ,获得积分10
14分钟前
小蘑菇应助halabouqii采纳,获得30
15分钟前
Otter完成签到,获得积分10
15分钟前
15分钟前
halabouqii发布了新的文献求助30
15分钟前
halabouqii完成签到,获得积分10
15分钟前
善良的剑通完成签到 ,获得积分10
16分钟前
Jasper应助lessormoto采纳,获得10
16分钟前
17分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234387
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994