Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer

计算机科学 知识图 学习迁移 图形 知识转移 匹配(统计) 人工智能 钥匙(锁) 机器学习 知识抽取 数据挖掘 理论计算机科学 知识管理 统计 数学 计算机安全
作者
Bin Lu,Xiaoying Gan,Weinan Zhang,Huaxiu Yao,Luoyi Fu,Xinbing Wang
标识
DOI:10.1145/3534678.3539281
摘要

Spatio-temporal graph learning is a key method for urban computing tasks, such as traffic flow, taxi demand and air quality forecasting. Due to the high cost of data collection, some developing cities have few available data, which makes it infeasible to train a well-performed model. To address this challenge, cross-city knowledge transfer has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities. However, the spatio-temporal graphs among different cities show irregular structures and varied features, which limits the feasibility of existing Few-Shot Learning (\emph{FSL}) methods. Therefore, we propose a model-agnostic few-shot learning framework for spatio-temporal graph called ST-GFSL. Specifically, to enhance feature extraction by transfering cross-city knowledge, ST-GFSL proposes to generate non-shared parameters based on node-level meta knowledge. The nodes in target city transfer the knowledge via parameter matching, retrieving from similar spatio-temporal characteristics. Furthermore, we propose to reconstruct the graph structure during meta-learning. The graph reconstruction loss is defined to guide structure-aware learning, avoiding structure deviation among different datasets. We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助小鱼采纳,获得10
刚刚
海猫食堂发布了新的文献求助10
1秒前
sa完成签到,获得积分10
1秒前
yw完成签到,获得积分10
2秒前
斯文败类应助岩壁人采纳,获得10
2秒前
善学以致用应助逍遥解牛采纳,获得10
3秒前
3秒前
3秒前
ding应助火星上的若颜采纳,获得10
4秒前
6秒前
sa发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
9秒前
奇异物质应助心灵美夜蓉采纳,获得10
10秒前
小鱼发布了新的文献求助10
12秒前
犹豫的铅笔完成签到,获得积分10
14秒前
15秒前
LU完成签到,获得积分10
16秒前
17秒前
yyh发布了新的文献求助50
19秒前
tasaf发布了新的文献求助200
20秒前
55155255完成签到,获得积分10
20秒前
打打应助,645615616采纳,获得10
22秒前
23秒前
情怀应助李永波采纳,获得10
24秒前
天天快乐应助小吴采纳,获得10
24秒前
CC完成签到,获得积分10
24秒前
25秒前
27秒前
陌子发布了新的文献求助10
28秒前
ym完成签到 ,获得积分10
29秒前
31秒前
mouxq发布了新的文献求助10
31秒前
32秒前
噼里啪啦发布了新的文献求助10
32秒前
所所应助liu采纳,获得10
33秒前
ZHI发布了新的文献求助80
33秒前
34秒前
35秒前
35秒前
luha发布了新的文献求助10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
【求助文献,并非书籍】Perovskite solar cells 200
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837096
求助须知:如何正确求助?哪些是违规求助? 3379280
关于积分的说明 10508448
捐赠科研通 3099045
什么是DOI,文献DOI怎么找? 1706743
邀请新用户注册赠送积分活动 821226
科研通“疑难数据库(出版商)”最低求助积分说明 772487