已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Weibull distribution and k-nearest neighbor imputation method to predict wall-to-wall tree lists for the entire forest region of Northeast China

威布尔分布 胸径 统计 插补(统计学) 森林资源清查 树(集合论) 数学 森林经营 林业 地理 缺少数据 数学分析
作者
Yuanyuan Fu,Hong S. He,Shaoqiang Wang,Lunche Wang
出处
期刊:Annals of forest science [Springer Science+Business Media]
卷期号:79 (1) 被引量:1
标识
DOI:10.1186/s13595-022-01161-9
摘要

Abstract Key message We propose a coupled framework to combine the strengths of the Weibull function in modeling diameter distributions and the ability of the k -nearest neighbor ( k NN) method to impute spatially continuous forest stand attributes for the prediction of wall-to-wall tree lists (lists of stems per hectare by species and diameter at breast height (DBH)) at regional scales. The tree lists of entire Northeast China’s forests predicted by the above framework reasonably reflect the species-specific tree density and diameter distributions. Context Detailed tree lists provide information about forest stocks disaggregated by species and size classes, which are crucial for forest managers to accurately characterize the current forest stand state to formulate targeted forest management strategies. However, regional tree list information is still lacking due to limited forest inventory. Aims We aimed to develop a coupled framework to enable the prediction of wall-to-wall tree lists for the entire forest region of Northeast China, then analyze the species-specific diameter distributions and reveal the spatial patterns of tree density by species. Methods A two-parameter Weibull function was used to model the species-specific diameter distributions in the sample plots, and a maximum likelihood estimation (MLE) was used to predict the parameters of the Weibull distributions. The goodness-of-fit of the predicted species-specific Weibull diameter distributions in each plot was evaluated by Kolmogorov-Smirnov (KS) test and an error index. The k NN model was used to impute the pixel-level stand mean DBH. Results Weibull distribution accurately described the species-specific diameter distributions. The imputed stand mean DBH from the k NN model showed comparable accuracy with earlier studies. No difference was detected between predicted and observed tree lists, with a small error index (0.24–0.58) of diameter distributions by species. The fitted species-specific diameter distributions generally showed a right-skewed unimodal or reverse J-shaped pattern. Conclusion Overall, the coupled framework developed in this study was well-suited for predicting the tree lists of large forested areas. Our results evidenced the spatial patterns and abundance of tree species in Northeast China and captured the forest regions affected by disturbances such as fire.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助亮子采纳,获得10
1秒前
34完成签到 ,获得积分10
2秒前
RuYi发布了新的文献求助30
3秒前
3秒前
斯文败类应助鱼yu采纳,获得10
4秒前
强健的迎波完成签到,获得积分10
7秒前
7秒前
7秒前
ZYY完成签到,获得积分10
8秒前
迟青应助科研通管家采纳,获得10
9秒前
斯寜应助科研通管家采纳,获得10
9秒前
迟青应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
迟青应助科研通管家采纳,获得10
10秒前
10秒前
orixero应助科研通管家采纳,获得30
10秒前
迟青应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
ssss发布了新的文献求助10
12秒前
轻松雨旋完成签到 ,获得积分10
12秒前
Ning00000发布了新的文献求助10
13秒前
Milktea123完成签到,获得积分10
14秒前
Prime完成签到 ,获得积分10
15秒前
越幸运完成签到 ,获得积分10
17秒前
不买版权你出什么成果完成签到 ,获得积分10
17秒前
19秒前
20秒前
22秒前
阿俊完成签到 ,获得积分10
23秒前
亮子发布了新的文献求助10
24秒前
王小汪完成签到,获得积分10
24秒前
licheng发布了新的文献求助10
25秒前
如意的冰双完成签到 ,获得积分10
27秒前
28秒前
Dr_an发布了新的文献求助10
29秒前
夜雨完成签到,获得积分10
30秒前
ERIS发布了新的文献求助10
32秒前
文欣完成签到 ,获得积分10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385400
关于积分的说明 10540273
捐赠科研通 3105957
什么是DOI,文献DOI怎么找? 1710791
邀请新用户注册赠送积分活动 823751
科研通“疑难数据库(出版商)”最低求助积分说明 774264