亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient parameter tuning of neural foundation models for drug perspective prediction from unstructured socio-medical data

计算机科学 机器学习 杠杆(统计) 社会化媒体 人工智能 数据科学 医疗保健 数据挖掘 经济增长 万维网 经济
作者
Reshma Unnikrishnan,S. Sowmya Kamath,Ananthanarayana V.S.
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106214-106214 被引量:1
标识
DOI:10.1016/j.engappai.2023.106214
摘要

The phenomenal popularity of social media platforms over the past decade has accelerated the development of intelligent applications that leverage social media data for informed decision-making in diverse domains like finance, education, public policy and healthcare management practices. While understanding the colloquial language of users on social media remains a challenging problem, access to users' medical perspectives that conversationally divulge healthcare-related experiences and insights can help reshape healthcare ecosystems like chronic disease management, pandemics, public health, pharmacovigilance and more. Most existing models are constrained to a particular dataset while neglecting model adaptability across data sources and domains. Model generalization across variable data sizes also has received very little research attention. Conventional foundation models can be fine-tuned by adding additional model heads or by appending contributing network layers, however, there has been very little focus on effective parameter calibration for adapting neural foundation models to a specific task. In this study, an Adaptive Learning mechanism for Socio-Medical data (AL4SM) built on generic foundation neural models with efficient parameter learning is proposed, to categorize users' perspectives on prescription drug-related experiences and adapt to diverse socio-medical data sources of variable sizes. AL4SM aims to lighten the over-parameterized mechanisms adopted by existing foundational techniques by efficiently learning latent medical information based on optimized parameter calibration and weight reinitialization techniques. Comprehensive cross-domain and cross-data analyses are undertaken to explore specific user perspectives related to prescription effectiveness and side effects. Validation experiments conducted on standard datasets obtained from Drugs.com and Druglib.com revealed that the proposed AL4SM outperformed state-of-the-art models, achieving an improvement of 6.06% in accuracy and 7.62% in F1-score for 3-class and 2% in F1-score for 10-class drug perspective categorization. The cross-data experiments further emphasized the superiority of the proposed model, with improved accuracy of 17% on Drugs.com and 9% on Druglib.com datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助海海采纳,获得10
9秒前
10秒前
CodeCraft应助nini采纳,获得10
12秒前
ZYP发布了新的文献求助10
16秒前
18秒前
海海发布了新的文献求助10
22秒前
充电宝应助科研通管家采纳,获得10
34秒前
海海完成签到,获得积分10
37秒前
雨渺清空完成签到 ,获得积分10
42秒前
43秒前
1分钟前
nini发布了新的文献求助10
1分钟前
orixero应助Frose采纳,获得10
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
时崎狂三发布了新的文献求助10
1分钟前
Jyy77完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
marco发布了新的文献求助10
1分钟前
WilliamJarvis完成签到 ,获得积分10
1分钟前
1分钟前
HEIKU应助marco采纳,获得10
1分钟前
HEIKU应助marco采纳,获得10
1分钟前
搜集达人应助marco采纳,获得10
1分钟前
闫冉发布了新的文献求助10
1分钟前
2分钟前
marco完成签到,获得积分20
2分钟前
无花果应助时崎狂三采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
敏静完成签到,获得积分10
2分钟前
科研通AI5应助闫冉采纳,获得10
2分钟前
2分钟前
2分钟前
爱撒娇的博超完成签到,获得积分20
2分钟前
2分钟前
科研通AI2S应助甜美的秋尽采纳,获得20
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819910
求助须知:如何正确求助?哪些是违规求助? 3362776
关于积分的说明 10418792
捐赠科研通 3081157
什么是DOI,文献DOI怎么找? 1694980
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522