TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope

表位 T细胞受体 计算生物学 计算机科学 生物 抗原 T细胞 遗传学 免疫系统
作者
Jie Wu,Qi Meng,Feiyan Zhang,Yuanjie Zheng
出处
期刊:Molecular Immunology [Elsevier BV]
卷期号:157: 30-41 被引量:1
标识
DOI:10.1016/j.molimm.2023.03.010
摘要

T cell receptors (TCRs) selectively bind to antigens to fight pathogens with specific immunity. Current tools focus on the nature of amino acids within sequences and take less into account the nature of amino acids far apart and the relationship between sequences, leading to significant differences in the results from different datasets. We propose TPBTE, a model based on convolutional Transformer for Predicting the Binding of TCR to Epitope. It takes epitope sequences and the complementary decision region 3 (CDR3) sequences of TCRβ chain as inputs. And it uses a convolutional attention mechanism to learn amino acid representations between different positions of the sequences based on learning local features of the sequences. At the same time, it uses cross attention to learn the interaction information between TCR sequences and epitope sequences. A comprehensive evaluation of the TCR-epitope data shows that the average area under the curve of TPBTE outperforms the baseline model, and demonstrate an intentional performance. In addition, TPBTE can give the probability of binding TCR to epitopes, which can be used as the first step of epitope screening, narrowing the scope of epitope search and reducing the time of epitope search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drz发布了新的文献求助10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
as9988776654完成签到 ,获得积分10
3秒前
zjx5591发布了新的文献求助10
5秒前
在水一方应助槛外土馒头采纳,获得10
7秒前
飞羽发布了新的文献求助20
7秒前
Bill完成签到 ,获得积分10
9秒前
13秒前
爆米花应助小罗采纳,获得10
13秒前
13秒前
12发布了新的文献求助20
14秒前
科研通AI5应助邢慧兰采纳,获得10
15秒前
科研通AI5应助鱼鱼鱼采纳,获得10
15秒前
天空发布了新的文献求助10
16秒前
16秒前
李健的小迷弟应助balko采纳,获得10
16秒前
可爱的函函应助cherish采纳,获得10
17秒前
科研通AI5应助宋岩采纳,获得10
19秒前
20秒前
22秒前
燃之一手完成签到 ,获得积分10
23秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
24秒前
24秒前
25秒前
juwish完成签到,获得积分10
25秒前
26秒前
汉堡包应助123采纳,获得30
29秒前
29秒前
30秒前
30秒前
30秒前
烟花应助飞羽采纳,获得10
30秒前
哎咿呀哎呀完成签到,获得积分10
31秒前
31秒前
32秒前
33秒前
星辰大海应助jimmy采纳,获得10
33秒前
NexusExplorer应助呜呼啦呼采纳,获得10
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806902
求助须知:如何正确求助?哪些是违规求助? 3351674
关于积分的说明 10355196
捐赠科研通 3067522
什么是DOI,文献DOI怎么找? 1684579
邀请新用户注册赠送积分活动 809860
科研通“疑难数据库(出版商)”最低求助积分说明 765635