已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Geographically weighted regression based on a network weight matrix: a case study using urbanization driving force data in China

地理信息系统 计算机科学 数据挖掘 人口 地理 统计 数学 地图学 社会学 人口学
作者
Jingyi He,Ye Wei,Bailang Yu
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (6): 1209-1235 被引量:25
标识
DOI:10.1080/13658816.2023.2192122
摘要

AbstractGeographically weighted regression (GWR) is a classical modeling method for dealing with spatial non-stationarity. It incorporates the distance decay effect in space to fit local regression models, where distance is defined as Euclidean distance. Although this definition has been expanded, it remains focused on physical distance. However, in the era of globalization and informatization, where the phenomenon of remotely close association is common, physical distance may not reflect real spatial proximity, and GWR based on physical distance has clear limitations. This paper proposes a geographically weighted regression based on a network weight matrix (NWM GWR) model. This does not rely on geographical location modeling; instead, it uses network distance to measure the proximity between two regions and weights observations by improving the kernel function to achieve distance attenuation. We adopt the population mobility network to establish a network weight matrix, modeling China's urbanization and its multidimensional driving factors using network autocorrelation and NWM GWR methods. Results show that the NWM GWR model has more accurate fit and better stability than ordinary least squares and GWR models, and better reveals relationships between variables, which makes it suitable for modeling economic and social systems more broadly.Keywords: Network weight matrixgeographically weighted regressionnetwork distancespatial non-stationarityordinary least squares Author contributionsJingyi He: methodological design, technical implementation, writing – original draft; Ye Wei: conceptual and methodological design, writing – review & editing, Supervision; Bailang Yu: writing – review & editing, validation.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementData and codes used in the study are available at https://doi.org/10.6084/m9.figshare.21299253.v4.Additional informationFundingThis work is supported by National Natural Science Foundation of China [No. 41971202].Notes on contributorsJingyi HeJingyi He is currently pursuing a doctorate in Urban and regional planning of Northeast Normal University, Changchun 130024, China. Her current research interest focuses on application of complex network and GIS in urban research.Ye WeiYe Wei is Professor of School of Geographic Sciences, Northeast Normal University, Changchun 130024, China. His research interests include urban and regional planning and GIS application.Bailang YuBailang Yu is Professor of Key Lab of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China. His research interests include urban remote sensing, nighttime light remote sensing, LiDAR, and object-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
年轻千愁完成签到 ,获得积分10
1秒前
今后应助白华苍松采纳,获得10
1秒前
付珊珊发布了新的文献求助10
1秒前
缥缈一曲发布了新的文献求助10
3秒前
Esther发布了新的文献求助10
4秒前
mjsdx完成签到,获得积分10
4秒前
多看文献发布了新的文献求助10
5秒前
Hazel发布了新的文献求助10
5秒前
wanci应助英勇羿采纳,获得10
9秒前
10秒前
科研通AI6应助陈文学采纳,获得10
13秒前
13秒前
稳重羽毛发布了新的文献求助10
14秒前
贤惠的翰完成签到 ,获得积分10
15秒前
冰棒比冰冰完成签到 ,获得积分10
16秒前
丘比特应助多看文献采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
liao应助科研通管家采纳,获得30
17秒前
ZhaohuaXie应助科研通管家采纳,获得20
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
思源应助科研通管家采纳,获得10
17秒前
18秒前
饱满鞅发布了新的文献求助10
19秒前
淡然的蚂蚁完成签到,获得积分10
20秒前
超绝菜菜子完成签到 ,获得积分10
21秒前
大知闲闲完成签到 ,获得积分10
22秒前
所所应助英勇羿采纳,获得10
23秒前
爆米花应助芷兰丁香采纳,获得10
23秒前
Hazel完成签到 ,获得积分10
24秒前
25秒前
25秒前
lyyyyl完成签到,获得积分10
26秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502206
求助须知:如何正确求助?哪些是违规求助? 4598218
关于积分的说明 14463133
捐赠科研通 4531772
什么是DOI,文献DOI怎么找? 2483580
邀请新用户注册赠送积分活动 1466915
关于科研通互助平台的介绍 1439517