Geographically weighted regression based on a network weight matrix: a case study using urbanization driving force data in China

地理信息系统 计算机科学 数据挖掘 人口 地理 统计 数学 地图学 社会学 人口学
作者
Jingyi He,Ye Wei,Bailang Yu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (6): 1209-1235 被引量:12
标识
DOI:10.1080/13658816.2023.2192122
摘要

AbstractGeographically weighted regression (GWR) is a classical modeling method for dealing with spatial non-stationarity. It incorporates the distance decay effect in space to fit local regression models, where distance is defined as Euclidean distance. Although this definition has been expanded, it remains focused on physical distance. However, in the era of globalization and informatization, where the phenomenon of remotely close association is common, physical distance may not reflect real spatial proximity, and GWR based on physical distance has clear limitations. This paper proposes a geographically weighted regression based on a network weight matrix (NWM GWR) model. This does not rely on geographical location modeling; instead, it uses network distance to measure the proximity between two regions and weights observations by improving the kernel function to achieve distance attenuation. We adopt the population mobility network to establish a network weight matrix, modeling China's urbanization and its multidimensional driving factors using network autocorrelation and NWM GWR methods. Results show that the NWM GWR model has more accurate fit and better stability than ordinary least squares and GWR models, and better reveals relationships between variables, which makes it suitable for modeling economic and social systems more broadly.Keywords: Network weight matrixgeographically weighted regressionnetwork distancespatial non-stationarityordinary least squares Author contributionsJingyi He: methodological design, technical implementation, writing – original draft; Ye Wei: conceptual and methodological design, writing – review & editing, Supervision; Bailang Yu: writing – review & editing, validation.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementData and codes used in the study are available at https://doi.org/10.6084/m9.figshare.21299253.v4.Additional informationFundingThis work is supported by National Natural Science Foundation of China [No. 41971202].Notes on contributorsJingyi HeJingyi He is currently pursuing a doctorate in Urban and regional planning of Northeast Normal University, Changchun 130024, China. Her current research interest focuses on application of complex network and GIS in urban research.Ye WeiYe Wei is Professor of School of Geographic Sciences, Northeast Normal University, Changchun 130024, China. His research interests include urban and regional planning and GIS application.Bailang YuBailang Yu is Professor of Key Lab of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China. His research interests include urban remote sensing, nighttime light remote sensing, LiDAR, and object-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_O8Wz4Z完成签到,获得积分10
1秒前
wangxiaoyating完成签到,获得积分10
2秒前
十八完成签到 ,获得积分10
3秒前
学术天后完成签到,获得积分10
5秒前
雨辰完成签到 ,获得积分10
6秒前
111111完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研小白_李完成签到,获得积分10
8秒前
wty发布了新的文献求助10
11秒前
zhang完成签到,获得积分10
11秒前
挽风完成签到,获得积分10
12秒前
学术天后发布了新的文献求助10
12秒前
伶俐如冰完成签到,获得积分10
13秒前
英姑应助佳佳佳采纳,获得10
15秒前
渠安完成签到,获得积分10
20秒前
20秒前
舒适静丹完成签到,获得积分10
20秒前
wty完成签到,获得积分10
20秒前
21秒前
昏睡的嵩完成签到,获得积分10
21秒前
zhaozhao完成签到,获得积分10
24秒前
追寻妖妖完成签到,获得积分10
25秒前
昏睡的嵩发布了新的文献求助10
25秒前
ning发布了新的文献求助20
25秒前
量子星尘发布了新的文献求助10
25秒前
TKTKW完成签到 ,获得积分10
29秒前
小呵发布了新的文献求助10
30秒前
追寻妖妖发布了新的文献求助30
30秒前
JJ完成签到,获得积分10
31秒前
现代的卿发布了新的文献求助30
32秒前
32秒前
35秒前
希法完成签到,获得积分10
41秒前
41秒前
大大彬完成签到 ,获得积分10
42秒前
赘婿应助雨过天晴采纳,获得30
43秒前
jenningseastera应助小呵采纳,获得30
43秒前
文艺寄灵发布了新的文献求助10
45秒前
池暮江吟春应助美丽电源采纳,获得10
45秒前
uupp完成签到,获得积分10
46秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883973
求助须知:如何正确求助?哪些是违规求助? 3426233
关于积分的说明 10747700
捐赠科研通 3151073
什么是DOI,文献DOI怎么找? 1739237
邀请新用户注册赠送积分活动 839646
科研通“疑难数据库(出版商)”最低求助积分说明 784753