An Ensemble Learning Model Reveals Accelerated Reductions in Snow Depth Over Arctic Sea Ice Under High‐Emission Scenarios

环境科学 北极的 海冰 气候学 北极冰盖 北极 气象学 自然地理学 地质学 海洋学 地理
作者
Haili Li,Chang‐Qing Ke,Xin Shen,Qingzhe Zhu,Yitao Cai
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (8) 被引量:1
标识
DOI:10.1029/2023jd039910
摘要

Abstract There are significant differences in snow depth predictions among different earth system models, and many models underestimate snow depth, restricting their application. Here, major factors influencing snow depth changes in the Coupled Model Intercomparison Project Phase 6 (CMIP6) were identified and evaluated. Based on satellite‐derived snow depth and CMIP6 data, an ensemble learning model based on multiple deep learning methods (hereafter referred to as the Multi‐DL model) was developed to predict future snow depth. According to satellite observations and two Operation IceBridge products, the Multi‐DL model yielded root mean square errors of 7.48, 6.20, and 6.17 cm. A continuous decrease in snow depth was observed from 2002 to 2100, and the rate of decrease accelerated with increasing emissions. Under the highest emission scenario, the first snow‐free year occurred in 2047, within the same decade as the first ice‐free year (2056). The predicted warm season snow depth was sensitive to sea ice velocity, sea ice concentration (siconc), precipitation, sea surface temperature (tos) and albedo, while the predicted cold season snow depth was sensitive to tos, air temperature, and siconc. The above parameters introduce some snow depth uncertainty. This method provides new ideas for predicting snow depth, and the generated snow depth records can provide data support for formulating Arctic‐related policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翰墨发布了新的文献求助10
1秒前
谨慎的雁桃应助嘻嘻采纳,获得10
2秒前
ZYC007完成签到,获得积分10
2秒前
852发布了新的文献求助100
3秒前
奋斗的蜗牛应助夏秋采纳,获得10
7秒前
独特的初彤完成签到 ,获得积分10
7秒前
深情安青应助张泽崇采纳,获得10
7秒前
喜悦的秋柔完成签到,获得积分10
8秒前
家向松完成签到,获得积分10
9秒前
pluto应助开心市民小刘采纳,获得10
12秒前
无奈元容发布了新的文献求助30
16秒前
bc应助皮毛柔软的猫采纳,获得10
19秒前
19秒前
21秒前
0.0发布了新的文献求助200
21秒前
在水一方应助smallsix采纳,获得10
22秒前
无花果应助zhangxinxin采纳,获得10
22秒前
23秒前
冰魂应助xyx采纳,获得10
23秒前
23秒前
25秒前
Lucas应助Aaron采纳,获得10
26秒前
奋斗的蜗牛应助心神依然采纳,获得10
27秒前
斑其完成签到,获得积分10
27秒前
shuicaoxi发布了新的文献求助10
27秒前
Feifei133发布了新的文献求助10
28秒前
Bin_Liu发布了新的文献求助10
30秒前
31秒前
33秒前
chengmin发布了新的文献求助10
34秒前
月半完成签到 ,获得积分10
35秒前
smallsix发布了新的文献求助10
37秒前
orixero应助Feifei133采纳,获得10
38秒前
38秒前
打打应助Catherine采纳,获得10
39秒前
烟花应助chengmin采纳,获得10
41秒前
42秒前
42秒前
局外人完成签到,获得积分10
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842