The joint learning of multi-resolution feature for multi-class retinal vessel segmentation

接头(建筑物) 计算机科学 分割 人工智能 特征(语言学) 班级(哲学) 模式识别(心理学) 视网膜 计算机视觉 分辨率(逻辑) 眼科 结构工程 医学 工程类 语言学 哲学
作者
Xiaofan Tang,Hao Chen,Xiangru Li,Sihua Yang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:584: 127570-127570 被引量:4
标识
DOI:10.1016/j.neucom.2024.127570
摘要

The task of multi-class vessel segmentation on retinal images is the basis for the arteriovenous quantitative analysis, which plays an important role in the diagnosis and treatment of cerebrovascular diseases. Due to the intricate details and intertwining of the retinal vessels, traditional feature learning networks based on single-level resolution images are prone to the troubles from arteriovenous confusion and vascular edge discontinuity. To this end, we develop a paradigm of multi-level image resolution joint learning, which makes up for the defects of feature modeling arising from single-level image resolution by combining the feature learning ability of the network across multiple resolution images. Specifically, we design a cross-scale feature fusion network, which uses structure of a global-local dual-branch network to extract the features of retinal images at multiple resolutions, so as to supplement the missing vascular features arising from the single-resolution branch network. This framwork not only corrects the intra-segment misclassification, but also improves continuity by supplementing the details of vascular edge. Furthermore, the cross-scale fusion process of the network at multiple stages is conducive to its optimization and enhances the collaborative learning ability of dual-branch. Meanwhile, we use the generative adversarial structure as the backbone to supervise and constrain the aforementioned feature fusion results. Finally, a large number of experiments are conducted on three publicly available datasets, DRIVE-AV, LES-AV, and HRF-AV. It is shown that the proposed scheme outperforms the current state-of-the-art methods significantly. The source code is available at https://github.com/Tang9867/Multi-Resolution-Learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cody发布了新的文献求助10
刚刚
充电宝应助孤独的又蓝采纳,获得10
1秒前
呜呼啦呼完成签到,获得积分10
1秒前
深情安青应助ymu采纳,获得10
1秒前
ahuang发布了新的文献求助10
2秒前
追寻代真发布了新的文献求助10
2秒前
完美世界应助kkt采纳,获得10
3秒前
3秒前
乐乐应助星星采纳,获得10
3秒前
wzp完成签到,获得积分20
3秒前
雨中客完成签到,获得积分10
4秒前
Lucas应助猪猪hero采纳,获得10
5秒前
5秒前
6秒前
摔碎玻璃瓶完成签到,获得积分10
6秒前
组一辈子的乐队应助LYK采纳,获得10
7秒前
义气小白菜完成签到 ,获得积分10
7秒前
FishBoooooo发布了新的文献求助30
8秒前
能干的莫言完成签到 ,获得积分10
9秒前
炸鱼饼完成签到,获得积分10
9秒前
鲤鱼懿轩完成签到,获得积分10
10秒前
爆米花应助追寻代真采纳,获得10
10秒前
10秒前
11秒前
英俊的思烟完成签到,获得积分10
12秒前
迅速的鹤完成签到,获得积分10
12秒前
萱萱发布了新的文献求助10
12秒前
微末完成签到,获得积分10
13秒前
13秒前
听话的富完成签到,获得积分20
14秒前
Away完成签到 ,获得积分10
14秒前
LL完成签到,获得积分10
14秒前
kkt发布了新的文献求助10
15秒前
张曰淼完成签到,获得积分10
16秒前
微末发布了新的文献求助10
16秒前
波鲁鲁爱喝酸奶完成签到 ,获得积分10
17秒前
17秒前
在水一方应助炸鱼饼采纳,获得10
18秒前
xxdn完成签到,获得积分10
18秒前
lastsnow完成签到 ,获得积分10
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100563
求助须知:如何正确求助?哪些是违规求助? 3638429
关于积分的说明 11529681
捐赠科研通 3347209
什么是DOI,文献DOI怎么找? 1839602
邀请新用户注册赠送积分活动 906790
科研通“疑难数据库(出版商)”最低求助积分说明 824031