Prediction of 6-DOF motion response of semi-submersible floating wind turbine in extreme sea conditions using OVMD-FE-PSO-LSTM methodology

涡轮机 海洋工程 运动(物理) 计算机科学 环境科学 工程类 航空航天工程 人工智能
作者
Jiarui Huang,Lei Song,Zhuoyi Yang,Qilong Wu,Xiaochen Jiang,Cheng Wang
标识
DOI:10.1177/14750902241239361
摘要

The motion response of offshore floating wind turbines significantly influences their structural integrity, power generation efficiency, operational complexity, safety, and stability. Therefore, predicting the motion response of offshore floating wind turbines is of paramount importance. In engineering practice, especially in extreme marine environments, the motion of wind turbines becomes more complex, making accurate prediction more challenging. In this era of rapid development in deep learning technology, some solutions have emerged for this problem. In this paper, we propose a hybrid model, namely the OVMD-FE-PSO-LSTM model. We begin by conducting numerical simulations of a 5 MW-OC4 semi-submersible floating wind turbine in extreme sea conditions, obtaining motion data for the turbine’s six degrees of freedom. We then decompose the initial motion data using an optimized traditional VMD method, assess the modal complexity with the FE method, combine modal components with similar complexity to reduce computational load, and make predictions using the PSO-LSTM model. Finally, we analyze and compare the predictive results of different models. The results demonstrate that the proposed hybrid model outperforms other comparative models in terms of accuracy, providing new insights into the prediction of the motion response of offshore floating wind turbines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助cctv18采纳,获得50
2秒前
隐世求开完成签到,获得积分10
2秒前
田様应助deanna采纳,获得20
2秒前
XYYX完成签到,获得积分20
4秒前
弈天完成签到 ,获得积分10
7秒前
顾矜应助沉静的龙猫采纳,获得10
7秒前
quantopt完成签到,获得积分0
8秒前
8秒前
lvvvvvv完成签到,获得积分10
8秒前
design完成签到,获得积分10
9秒前
9秒前
9秒前
ZA完成签到,获得积分10
9秒前
10秒前
打打应助bikaoguo51采纳,获得10
10秒前
11秒前
11秒前
科研通AI5应助XYYX采纳,获得10
12秒前
14秒前
yyc发布了新的文献求助10
14秒前
15秒前
Nes发布了新的文献求助10
15秒前
15秒前
joey完成签到,获得积分10
16秒前
17秒前
ding应助XTNI采纳,获得10
17秒前
糖糖完成签到 ,获得积分10
18秒前
18秒前
applelpypies发布了新的文献求助10
18秒前
李健应助青青河边草采纳,获得30
18秒前
lcsolar完成签到,获得积分10
19秒前
念辞应助顺利的万宝路采纳,获得10
20秒前
王讯完成签到,获得积分10
20秒前
20秒前
Nes完成签到,获得积分10
22秒前
sunce1990发布了新的文献求助10
22秒前
小蘑菇应助wangfang采纳,获得20
22秒前
22秒前
忧郁豆芽发布了新的文献求助10
22秒前
hjyylab应助左丘冥采纳,获得10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838348
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515331
捐赠科研通 3100241
什么是DOI,文献DOI怎么找? 1707392
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772890