已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative reconstruction for limited-angle CT using implicit neural representation

初始化 计算机科学 人工智能 迭代重建 人工神经网络 趋同(经济学) 反问题 迭代法 投影(关系代数) 代表(政治) 机器学习 算法 模式识别(心理学) 数学优化 数学 政治 政治学 法学 数学分析 经济 程序设计语言 经济增长
作者
Jooho Lee,Jongduk Baek
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (10): 105008-105008 被引量:10
标识
DOI:10.1088/1361-6560/ad3c8e
摘要

Abstract Objective. Limited-angle computed tomography (CT) presents a challenge due to its ill-posed nature. In such scenarios, analytical reconstruction methods often exhibit severe artifacts. To tackle this inverse problem, several supervised deep learning-based approaches have been proposed. However, they are constrained by limitations such as generalization issue and the difficulty of acquiring a large amount of paired CT images. Approach. In this work, we propose an iterative neural reconstruction framework designed for limited-angle CT. By leveraging a coordinate-based neural representation, we formulate tomographic reconstruction as a convex optimization problem involving a deep neural network. We then employ differentiable projection layer to optimize this network by minimizing the discrepancy between the predicted and measured projection data. In addition, we introduce a prior-based weight initialization method to ensure the network starts optimization with an informed initial guess. This strategic initialization significantly improves the quality of iterative reconstruction by stabilizing the divergent behavior in ill-posed neural fields. Our method operates in a self-supervised manner, thereby eliminating the need for extensive data. Main results. The proposed method outperforms other iterative and learning-based methods. Experimental results on XCAT and Mayo Clinic datasets demonstrate the effectiveness of our approach in restoring anatomical features as well as structures. This finding was substantiated by visual inspections and quantitative evaluations using NRMSE, PSNR, and SSIM. Moreover, we conduct a comprehensive investigation into the divergent behavior of iterative neural reconstruction, thus revealing its suboptimal convergence when starting from scratch. In contrast, our method consistently produced accurate images by incorporating an initial estimate as informed initialization. Significance. This work showcases the feasibility to reconstruct high-fidelity CT images from limited-angle x-ray projections. The proposed methodology introduces a novel data-free approach to enhance medical imaging, holding promise across various clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
hzhniubility完成签到,获得积分10
2秒前
骨科小李完成签到,获得积分10
5秒前
Wry发布了新的文献求助10
6秒前
sunny33发布了新的文献求助10
7秒前
左岸发布了新的文献求助10
7秒前
7秒前
ding应助沉静素采纳,获得10
9秒前
左岸完成签到,获得积分10
13秒前
14秒前
星小完成签到,获得积分10
14秒前
归尘应助贝壳采纳,获得10
16秒前
隐形曼青应助宋宋采纳,获得10
18秒前
18秒前
追寻完成签到,获得积分10
20秒前
21秒前
小雪发布了新的文献求助30
24秒前
qiandi完成签到 ,获得积分10
24秒前
上官若男应助Wry采纳,获得10
25秒前
26秒前
汉皇高祖发布了新的文献求助10
26秒前
27秒前
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
嘿嘿应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得20
28秒前
我是老大应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
嘿嘿应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602961
求助须知:如何正确求助?哪些是违规求助? 4688164
关于积分的说明 14852569
捐赠科研通 4686724
什么是DOI,文献DOI怎么找? 2540360
邀请新用户注册赠送积分活动 1506947
关于科研通互助平台的介绍 1471495