MSLTE: multiple self-supervised learning tasks for enhancing EEG emotion recognition

情绪识别 脑电图 计算机科学 语音识别 认知心理学 心理学 人工智能 神经科学
作者
Guangqiang Li,Ning Chen,Yixiang Niu,Zhangyong Xu,Yuxuan Dong,Jing Jin,Hongqin Zhu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 024003-024003 被引量:3
标识
DOI:10.1088/1741-2552/ad3c28
摘要

Abstract Objective . The instability of the EEG acquisition devices may lead to information loss in the channels or frequency bands of the collected EEG. This phenomenon may be ignored in available models, which leads to the overfitting and low generalization of the model. Approach . Multiple self-supervised learning tasks are introduced in the proposed model to enhance the generalization of EEG emotion recognition and reduce the overfitting problem to some extent. Firstly, channel masking and frequency masking are introduced to simulate the information loss in certain channels and frequency bands resulting from the instability of EEG, and two self-supervised learning-based feature reconstruction tasks combining masked graph autoencoders (GAE) are constructed to enhance the generalization of the shared encoder. Secondly, to take full advantage of the complementary information contained in these two self-supervised learning tasks to ensure the reliability of feature reconstruction, a weight sharing (WS) mechanism is introduced between the two graph decoders. Thirdly, an adaptive weight multi-task loss (AWML) strategy based on homoscedastic uncertainty is adopted to combine the supervised learning loss and the two self-supervised learning losses to enhance the performance further. Main results . Experimental results on SEED, SEED-V, and DEAP datasets demonstrate that: (i) Generally, the proposed model achieves higher averaged emotion classification accuracy than various baselines included in both subject-dependent and subject-independent scenarios. (ii) Each key module contributes to the performance enhancement of the proposed model. (iii) It achieves higher training efficiency, and significantly lower model size and computational complexity than the state-of-the-art (SOTA) multi-task-based model. (iv) The performances of the proposed model are less influenced by the key parameters. Significance . The introduction of the self-supervised learning task helps to enhance the generalization of the EEG emotion recognition model and eliminate overfitting to some extent, which can be modified to be applied in other EEG-based classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
小小博应助科研通管家采纳,获得10
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
7秒前
满意草丛完成签到,获得积分20
7秒前
9秒前
9秒前
9秒前
不知道取啥名完成签到 ,获得积分10
10秒前
10秒前
11秒前
满意草丛发布了新的文献求助10
11秒前
COCO完成签到,获得积分20
11秒前
RATHER完成签到,获得积分10
13秒前
14秒前
zdesfsfa发布了新的文献求助10
14秒前
水清木华发布了新的文献求助200
16秒前
黑眼圈发布了新的文献求助10
16秒前
18秒前
hahamissyu完成签到,获得积分10
19秒前
良辰应助柔弱吉利蛋采纳,获得10
20秒前
20秒前
KANG完成签到,获得积分20
20秒前
21秒前
苦瓜柠檬冰茶完成签到 ,获得积分10
21秒前
22秒前
22秒前
kun发布了新的文献求助10
23秒前
28秒前
缪连虎完成签到,获得积分10
28秒前
我是老大应助宋阳采纳,获得10
28秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899633
求助须知:如何正确求助?哪些是违规求助? 3444222
关于积分的说明 10833811
捐赠科研通 3169095
什么是DOI,文献DOI怎么找? 1750950
邀请新用户注册赠送积分活动 846407
科研通“疑难数据库(出版商)”最低求助积分说明 789179