Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential

分子动力学 氢化锆 材料科学 流离失所(心理学) 密度泛函理论 工作(物理) 氢化物 化学物理 统计物理学 计算化学 热力学 化学 物理 量子力学 心理学 冶金 心理治疗师
作者
Xi 玺 Wang 王,Meng 孟 Tang 唐,Ming-Xuan 明璇 Jiang 蒋,Yang-Chun 阳春 Chen 陈,Zhi-Xiao 智骁 Liu 刘,Hui-Qiu 辉球 Deng 邓
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:33 (7): 076103-076103 被引量:4
标识
DOI:10.1088/1674-1056/ad362b
摘要

Abstract Zirconium hydride (ZrH 2 ) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH 2 . Molecular dynamics (MD) and ab initio molecular dynamics (AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform large-scale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH 2 system by using the deep-potential (DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH 2 system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark (ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε -ZrH 2 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
852应助少卿采纳,获得10
2秒前
义气完成签到,获得积分10
2秒前
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
Syato应助科研通管家采纳,获得10
4秒前
s子完成签到,获得积分10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
迷人素应助科研通管家采纳,获得10
4秒前
哎嘿应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
bichumao完成签到,获得积分10
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
eric888应助科研通管家采纳,获得200
5秒前
哎嘿应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
歪石开通发布了新的文献求助10
6秒前
董亦菲完成签到 ,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
李爱国应助Ting采纳,获得10
7秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535632
求助须知:如何正确求助?哪些是违规求助? 4623458
关于积分的说明 14587431
捐赠科研通 4563975
什么是DOI,文献DOI怎么找? 2501345
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451737