PEDNet: A Lightweight Detection Network of Power Equipment in Infrared Image Based on YOLOv4-Tiny

目标检测 故障检测与隔离 保险丝(电气) 特征(语言学) 特征提取 计算机科学 模式识别(心理学) 人工智能 计算机视觉 工程类 语言学 电气工程 哲学 执行机构
作者
Jianqi Li,Yaqian Xu,Keheng Nie,Binfang Cao,Sinuo Zuo,Jiang Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:55
标识
DOI:10.1109/tim.2023.3235416
摘要

As a promising and noncontact detection technique, machine vision has been widely used in fault diagnosis of substation equipment. The rapid and accurate detection of substation equipment in infrared images is one of the key steps for automatic fault diagnosis. However, the complexity of image background, the low contrast of infrared images, and the rotational targets in infrared images pose a great challenge to detection task. This study aims to improve the detection accuracy of the model while having real-time detection speed and propose a lightweight power equipment detection network (PEDNet) based on You Only Look Once (YOLOv4)-tiny. First, a novel global information aggregation module (GIAM) is constructed to guide the network to focus on the salient regions where the target equipment is located. Second, an improved spatial transformer network (ISTN) is introduced to reduce the impact of rotational targets on detection accuracy. Finally, a feature enhanced fusion network (FEFN) is designed through the use of a multiscale feature cross-fusion structure. It can fully fuse the feature information of the salient region, the rotational targets, and the strong semantic information. The experimental results show that the proposed PEDNet can reach 92.66% detection accuracy and 107.07 frames/s real-time detection speed on the testing datasets. Compared with YOLOv4-tiny, there is a small sacrifice in detection speed, but the detection accuracy is improved and significantly higher than the existing state-of-the-art (SOTA) object detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胡完成签到,获得积分20
刚刚
丰知然应助yuntong采纳,获得10
1秒前
1秒前
1秒前
1秒前
小二郎应助灼灼采纳,获得10
1秒前
AAAA发布了新的文献求助10
2秒前
2秒前
喜悦忆安完成签到,获得积分10
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
Owen应助俊逸成危采纳,获得10
4秒前
果实发布了新的文献求助10
4秒前
4秒前
明理歌曲完成签到,获得积分20
4秒前
充电宝应助木子采纳,获得10
4秒前
草莓啊完成签到,获得积分10
5秒前
yu完成签到,获得积分10
5秒前
5秒前
传奇3应助aria采纳,获得10
5秒前
6秒前
BareBear应助LL采纳,获得10
6秒前
6秒前
Hello应助billGeorge采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
yy完成签到,获得积分20
7秒前
braving发布了新的文献求助10
7秒前
隐形曼青应助十七采纳,获得10
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
壮观月饼发布了新的文献求助30
9秒前
9秒前
西西发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473404
求助须知:如何正确求助?哪些是违规求助? 4575556
关于积分的说明 14353248
捐赠科研通 4503084
什么是DOI,文献DOI怎么找? 2467419
邀请新用户注册赠送积分活动 1455329
关于科研通互助平台的介绍 1429357