Inter-chain contact map prediction for protein complex based on graph attention network and triangular multiplication update

计算机科学 乘法(音乐) 图形 理论计算机科学 蛋白质结构预测 图论 蛋白质结构 人工智能 算法 数学 组合数学 生物 生物化学
作者
Tong Wu,He Huang,Jiashan Li,Wenda Wang,Xinqi Gong
标识
DOI:10.1109/bibm55620.2022.9995360
摘要

Residue-residue interactions between individual subunits of protein complexes are critical for predicting complex structures and can serve as distance constraints to guide complex structure modeling. Some recent studies have made some progress in predicting protein inter-chain contact maps based on multiple sequence alignments and deep learning models. Here we develop a new model based on graph attention network and triangular multiplication update to predict interchain contact maps for homologous protein complexes, named PGT (P is Protein, G is Graph attention network and T is Triangular multiplication update). Different from other methods which need to perform multiple sequence alignment processes and extract complicated manual features, PGT extracts embeddings of residues through the protein language model. Besides, we introduce structural information through the graph attention network to learn the spatial information of subunits from the complex structure and utilize the triangular multiplication module to capture triangular constraints between residues. To demonstrate the effectiveness of our method, we compare PGT with previous works such as DeepHomo, DRCon and Glinter on two independent test sets. The results show that PGT substantially outperforms these methods. Furthermore, we also perform two ablation experiments to demonstrate the necessity of introducing graph attention network and triangular multiplication update. In all, our framework presents new modules to accurately predict inter-chain contact maps in homologous protein complexes and it's also useful to analyze interactions in other type of protein complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ori驳回了Owen应助
刚刚
练习者发布了新的文献求助10
1秒前
所所应助甜心采纳,获得10
1秒前
动漫大师发布了新的文献求助10
1秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
一颗柚子发布了新的文献求助10
3秒前
卡卡西应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
非而者厚应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
JamesPei应助付冀川采纳,获得10
3秒前
4秒前
共享精神应助Q123ba叭采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
Leo完成签到,获得积分10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
万能图书馆应助期待未来采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
非而者厚应助科研通管家采纳,获得10
6秒前
Luv_JoeyZhang完成签到 ,获得积分10
6秒前
6秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910