已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction

百分位 四分位数 支持向量机 医学 置信区间 队列 肾移植 内科学 比例危险模型 机器学习 梯度升压 肾移植 人工智能 随机森林 计算机科学 统计 移植 数学
作者
Agathe Truchot,Marc Raynaud,Nassim Kamar,Maarten Naesens,Christophe Legendre,Michel Delahousse,Olivier Thaunat,Matthias Büchler,Marta Crespo,Kamilla Linhares,Babak J. Orandi,Enver Akalin,Gervacio Soler Pujol,Hélio Tedesco‐Silva,Gaurav Gupta,Dorry L. Segev,Xavier Jouven,Andrew Bentall,Mark D. Stegall,Carmen Lefaucheur,Olivier Aubert,Alexandre Loupy
出处
期刊:Kidney International [Elsevier BV]
卷期号:103 (5): 936-948 被引量:11
标识
DOI:10.1016/j.kint.2022.12.011
摘要

Machine learning (ML) models have recently shown potential for predicting kidney allograft outcomes. However, their ability to outperform traditional approaches remains poorly investigated. Therefore, using large cohorts of kidney transplant recipients from 14 centers worldwide, we developed ML-based prediction models for kidney allograft survival and compared their prediction performances to those achieved by a validated Cox-Based Prognostication System (CBPS). In a French derivation cohort of 4000 patients, candidate determinants of allograft failure including donor, recipient and transplant-related parameters were used as predictors to develop tree-based models (RSF, RSF-ERT, CIF), Support Vector Machine models (LK-SVM, AK-SVM) and a gradient boosting model (XGBoost). Models were externally validated with cohorts of 2214 patients from Europe, 1537 from North America, and 671 from South America. Among these 8422 kidney transplant recipients, 1081 (12.84%) lost their grafts after a median post-transplant follow-up time of 6.25 years (Inter Quartile Range 4.33-8.73). At seven years post-risk evaluation, the ML models achieved a C-index of 0.788 (95% bootstrap percentile confidence interval 0.736-0.833), 0.779 (0.724-0.825), 0.786 (0.735-0.832), 0.527 (0.456-0.602), 0.704 (0.648-0.759) and 0.767 (0.711-0.815) for RSF, RSF-ERT, CIF, LK-SVM, AK-SVM and XGBoost respectively, compared with 0.808 (0.792-0.829) for the CBPS. In validation cohorts, ML models' discrimination performances were in a similar range of those of the CBPS. Calibrations of the ML models were similar or less accurate than those of the CBPS. Thus, when using a transparent methodological pipeline in validated international cohorts, ML models, despite overall good performances, do not outperform a traditional CBPS in predicting kidney allograft failure. Hence, our current study supports the continued use of traditional statistical approaches for kidney graft prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的烤鸡完成签到,获得积分10
1秒前
ZHUZHU发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
端庄的立果完成签到,获得积分10
7秒前
新手菜鸟完成签到,获得积分10
8秒前
9秒前
吃了就会胖完成签到 ,获得积分10
10秒前
魁梧的傲芙完成签到 ,获得积分10
10秒前
彭于晏应助Fnnnn采纳,获得10
11秒前
金戈发布了新的文献求助10
12秒前
生动刺猬完成签到,获得积分20
13秒前
CodeCraft应助小田采纳,获得10
14秒前
16秒前
O已w时o完成签到,获得积分10
16秒前
17秒前
17秒前
Jessica完成签到,获得积分10
18秒前
ZHUZHU完成签到,获得积分10
20秒前
20秒前
程风破浪发布了新的文献求助10
22秒前
22秒前
小西完成签到 ,获得积分10
24秒前
jason完成签到 ,获得积分10
24秒前
赵振辉发布了新的文献求助10
26秒前
28秒前
DJ完成签到,获得积分10
29秒前
小明应助壮观的夏山采纳,获得10
30秒前
白芷完成签到,获得积分10
31秒前
32秒前
35秒前
搜集达人应助Shan采纳,获得10
35秒前
MlzqdE发布了新的文献求助10
36秒前
37秒前
37秒前
木子木发布了新的文献求助10
38秒前
小小迷糊发布了新的文献求助10
39秒前
39秒前
程风破浪完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539184
求助须知:如何正确求助?哪些是违规求助? 3973444
关于积分的说明 12308859
捐赠科研通 3640283
什么是DOI,文献DOI怎么找? 2004484
邀请新用户注册赠送积分活动 1039819
科研通“疑难数据库(出版商)”最低求助积分说明 929006