已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image-and-Skeleton-Based Parameterized Approach to Real-Time Identification of Construction Workers’ Unsafe Behaviors

参数化复杂度 鉴定(生物学) 人工智能 计算机科学 计算机视觉 骨架(计算机编程) 模式识别(心理学) 算法 程序设计语言 植物 生物
作者
Hongling Guo,Heng Li,Qinghua Ding,Martin Skitmore
出处
期刊:Journal of Construction Engineering and Management-asce 卷期号:144 (6) 被引量:32
标识
DOI:10.1061/(asce)co.1943-7862.0001497
摘要

Workers’ unsafe behaviors are one of the main causes for construction accidents. To fully understand the causes to unsafe behaviors on site will benefit their prevention, thus reducing construction accidents. The accurate and timely identification of site workers' unsafe behaviors can aid in the analysis of the causes to unsafe behaviors and prevention of construction accidents. However, the traditional methods (e.g. site observation) of behavior data collection on site is neither efficient nor comprehensive. This paper develops a skeleton-based real-time identification method by combining image-based technologies, construction safety knowledge and ergonomic theory. The proposed method recognizes unsafe behaviors by simplifying dynamic motions into static postures, which can be described by a few parameters. Three basic modules are involved: an unsafe behavior database, real-time data collection module and behavior judgement module. A laboratory test demonstrated the feasibility, efficiency and accuracy of the method. The method has the potential to improve construction safety management by providing comprehensive data for the systematic identification of the causes to workers' unsafe behaviors, such as inappropriate management methods, measures or decisions, personal characteristics, work space and time, etc., as well as warning workers identified as behaving unsafely, if necessary. Thus, this paper contributes to practice and the body of knowledge of construction safety management, as well as research and practice in image-based behavior recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm_zxh完成签到,获得积分10
2秒前
科研通AI5应助jkdajsk采纳,获得10
4秒前
SimmonsLI完成签到,获得积分10
8秒前
大模型应助liuwei采纳,获得10
10秒前
iu1392发布了新的文献求助10
12秒前
zhao完成签到 ,获得积分10
13秒前
Kunning完成签到 ,获得积分10
20秒前
wanci应助结实初翠采纳,获得30
27秒前
ying818k完成签到 ,获得积分10
33秒前
34秒前
gk123kk完成签到,获得积分0
35秒前
有热心愿意完成签到,获得积分10
37秒前
39秒前
40秒前
jkdajsk发布了新的文献求助10
47秒前
火星仙人掌完成签到,获得积分10
48秒前
YifanWang应助兴奋灵采纳,获得10
49秒前
丰富源智完成签到,获得积分10
54秒前
444完成签到,获得积分20
55秒前
结实初翠完成签到,获得积分10
57秒前
sciN完成签到 ,获得积分10
58秒前
孤独尔白应助沈严青采纳,获得10
59秒前
奋斗的觅山完成签到,获得积分20
1分钟前
1分钟前
肉丸完成签到 ,获得积分10
1分钟前
1分钟前
啦啦啦啦完成签到,获得积分10
1分钟前
吾皇完成签到 ,获得积分10
1分钟前
FashionBoy应助啦啦啦啦采纳,获得10
1分钟前
科研通AI5应助999999采纳,获得10
1分钟前
ZhaoPeng完成签到,获得积分10
1分钟前
大画家完成签到 ,获得积分0
1分钟前
1分钟前
聪慧的娜完成签到 ,获得积分10
1分钟前
1分钟前
999999发布了新的文献求助10
1分钟前
华仔应助ther采纳,获得10
1分钟前
zyk完成签到 ,获得积分10
1分钟前
liuwei发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798442
求助须知:如何正确求助?哪些是违规求助? 3343845
关于积分的说明 10317839
捐赠科研通 3060544
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296