Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation

肖特基势垒 材料科学 光催化 半导体 光电子学 等离子体子 紫外线 电子 带隙 载流子 可见光谱 光化学 纳米技术 化学 催化作用 二极管 量子力学 物理 生物化学
作者
An Wang,Shijie Wu,Jialu Dong,Ruoxin Wang,Jia‐Wei Wang,Jiali Zhang,Shuxian Zhong,Song Bai
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:404: 127145-127145 被引量:155
标识
DOI:10.1016/j.cej.2020.127145
摘要

Hybrid photocatalytic nanostructures composed of plasmonic metal and wide-band-gap semiconductor components have been widely developed, in which metal not only acts as a cocatalyst to trap the photogenerated electrons from semiconductor for improved charge separation and provide highly active sites for accelerated reaction kinetics, but also serves as a light-harvesting antennae to extend the light absorption region based on the injection of plasmonic hot electrons into the semiconductor. In both circumstances, rational design of metal/semiconductor interface is highly desirable to smooth the migration of electrons and promote the separation of carriers. Herein, based on the deposition of Au on TiO2 nanocrystals with different exposed facets, it is found that the formation of Au/TiO2(1 0 1) interface lowers the height of Schottky barrier in comparison with Au/TiO2(0 0 1) interface, enhancing the transfer of conduction band (CB) electrons from TiO2 to Au cocatalysts under ultraviolet light irradiation and promoting the hot electron injection from plasmonic Au into the CB of TiO2 with the excitation of Au by visible light. The more efficient interfacial charge transfer and separation enable more electrons participating in the conversion of CO2 to CO and CH4. As a result, at both excitation wavelengths, the Au-TiO2 sample with exclusive Au/TiO2(1 0 1) interfaces significantly ameliorates the photocatalytic activities in CO and CH4 production compared to other samples containing Au/TiO2(0 0 1) interfaces. The interfacial facet engineered Schottky barrier may open a new window to rationally designing metal–semiconductor hybrid structures for photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙燕应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
情怀应助J_C_Van采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Paeonolmite完成签到,获得积分10
2秒前
2秒前
顾矜应助如意静白采纳,获得10
3秒前
3秒前
4秒前
AhhHuang应助hbsand采纳,获得10
5秒前
5秒前
guozizi发布了新的文献求助150
5秒前
卡卡西应助溫蒂采纳,获得30
5秒前
长命百岁完成签到 ,获得积分10
5秒前
6秒前
6秒前
科研混子完成签到,获得积分10
6秒前
heye完成签到,获得积分20
6秒前
务实的听筠完成签到,获得积分20
7秒前
7秒前
隐形曼青应助zxer采纳,获得10
7秒前
77发布了新的文献求助10
7秒前
小蘑菇应助自由抽屉采纳,获得10
7秒前
medxyy发布了新的文献求助20
8秒前
9秒前
krui发布了新的文献求助10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814536
求助须知:如何正确求助?哪些是违规求助? 3358651
关于积分的说明 10396766
捐赠科研通 3076017
什么是DOI,文献DOI怎么找? 1689648
邀请新用户注册赠送积分活动 813180
科研通“疑难数据库(出版商)”最低求助积分说明 767514