Disrupted rich-club network organization and individualized identification of patients with major depressive disorder

重性抑郁障碍 默认模式网络 心理学 磁共振弥散成像 静息状态功能磁共振成像 神经科学 功能磁共振成像 模块化(生物学) 神经心理学 俱乐部 连接体 磁共振成像 医学 功能连接 生物 认知 遗传学 解剖 放射科
作者
Xinyi Liu,Cancan He,Dandan Fan,Yao Zhu,Feifei Zang,Qing Wang,Haisan Zhang,Zhijun Zhang,Hongxing Zhang,Chunming Xie
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier BV]
卷期号:108: 110074-110074 被引量:40
标识
DOI:10.1016/j.pnpbp.2020.110074
摘要

Altered structural and functional brain networks have been extensively studied in major depressive disorder (MDD) patients. However, whether the differential connectivity patterns in the rich-club organization, assessed from structural brain network analyses, and the associated connections of these regions are particularly susceptible to depression remain unclear. We acquired resting-state functional magnetic resonance imaging (R-fMRI) and diffusion tensor imaging (DTI) from 31 unmedicated MDD patients and 32 cognitively normal (CN) subjects and completed a series of neuropsychological tests. Rich-club organization, network properties, and coupling between structural and functional connectivity (SC-FC) were explored. Furthermore, whether these indices could potentially deliver effective clinical predictive value for MDD patients were examined. The MDD patients showed disrupted structural rich-club organization and modularity, as well as a distinct correlation pattern between global efficiency and rich-club organization. Importantly, reduced SC-FC coupling, reflecting a decreased agreement in the integrity of the networks, was significantly associated with the strength of structural rich-club connections in the MDD patients. Furthermore, the disrupted structural rich-club organization, which was primarily located in the default mode network (DMN) and executive control network (ECN), emerged as a valuable indicator to distinguish between MDD and CN. Findings of this study identified that the disrupted rich-club structural organization significantly influenced brain structural network modularity and integrity and could serve as a promising biological marker for the identification of MDD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixi发布了新的文献求助10
刚刚
妮妮完成签到 ,获得积分10
1秒前
大模型应助景飞丹采纳,获得10
1秒前
Jasper应助北冰石采纳,获得10
4秒前
踏实的怜菡完成签到 ,获得积分10
4秒前
丘比特应助背后乌冬面采纳,获得10
5秒前
谨慎采白完成签到 ,获得积分10
8秒前
9秒前
wangsiyuan完成签到 ,获得积分10
10秒前
Lucas应助体贴坤坤采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
安好完成签到,获得积分20
11秒前
13秒前
14秒前
关关完成签到 ,获得积分10
14秒前
景飞丹发布了新的文献求助10
14秒前
15秒前
17秒前
研友_n0gowL完成签到,获得积分10
18秒前
flyindancewei发布了新的文献求助10
18秒前
qwe1108完成签到 ,获得积分10
19秒前
冰魂应助此然采纳,获得10
19秒前
科研通AI2S应助Nicole采纳,获得10
19秒前
大狒狒发布了新的文献求助10
20秒前
20秒前
科研通AI5应助安好采纳,获得10
20秒前
SciGPT应助妖妖采纳,获得10
21秒前
hongyintao发布了新的文献求助10
21秒前
虚幻小丸子完成签到 ,获得积分10
21秒前
艾妮吗发布了新的文献求助10
21秒前
无花果应助可靠的0采纳,获得10
21秒前
anna521212完成签到 ,获得积分10
22秒前
轻松的雨竹完成签到 ,获得积分10
25秒前
25秒前
26秒前
26秒前
大狒狒完成签到,获得积分10
26秒前
28秒前
123完成签到 ,获得积分10
29秒前
情怀应助文章仙人采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862650
求助须知:如何正确求助?哪些是违规求助? 3405163
关于积分的说明 10643563
捐赠科研通 3128648
什么是DOI,文献DOI怎么找? 1725356
邀请新用户注册赠送积分活动 831000
科研通“疑难数据库(出版商)”最低求助积分说明 779516