The Application of Deep Learning in Cancer Prognosis Prediction

深度学习 人工智能 机器学习 癌症 计算机科学 预测建模 精密医学 医学 生物信息学 内科学 病理 生物
作者
Wan Zhu,Longxiang Xie,Jianye Han,Xiangqian Guo
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 603-603 被引量:213
标识
DOI:10.3390/cancers12030603
摘要

Deep learning has been applied to many areas in health care, including imaging diagnosis, digital pathology, prediction of hospital admission, drug design, classification of cancer and stromal cells, doctor assistance, etc. Cancer prognosis is to estimate the fate of cancer, probabilities of cancer recurrence and progression, and to provide survival estimation to the patients. The accuracy of cancer prognosis prediction will greatly benefit clinical management of cancer patients. The improvement of biomedical translational research and the application of advanced statistical analysis and machine learning methods are the driving forces to improve cancer prognosis prediction. Recent years, there is a significant increase of computational power and rapid advancement in the technology of artificial intelligence, particularly in deep learning. In addition, the cost reduction in large scale next-generation sequencing, and the availability of such data through open source databases (e.g., TCGA and GEO databases) offer us opportunities to possibly build more powerful and accurate models to predict cancer prognosis more accurately. In this review, we reviewed the most recent published works that used deep learning to build models for cancer prognosis prediction. Deep learning has been suggested to be a more generic model, requires less data engineering, and achieves more accurate prediction when working with large amounts of data. The application of deep learning in cancer prognosis has been shown to be equivalent or better than current approaches, such as Cox-PH. With the burst of multi-omics data, including genomics data, transcriptomics data and clinical information in cancer studies, we believe that deep learning would potentially improve cancer prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
颜琪完成签到,获得积分10
1秒前
从容寻冬关注了科研通微信公众号
2秒前
Panchael完成签到,获得积分10
2秒前
2秒前
小猫咪发布了新的文献求助10
2秒前
momo完成签到,获得积分10
2秒前
3秒前
3秒前
天真的雅绿完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助稗子采纳,获得10
4秒前
pluto应助LinYX采纳,获得10
4秒前
5秒前
5秒前
5秒前
研友_nEowP8完成签到,获得积分10
6秒前
6秒前
毛子涵发布了新的文献求助10
6秒前
6秒前
6秒前
Wong Ka Kui完成签到,获得积分10
6秒前
李健应助叮叮叮采纳,获得10
7秒前
7秒前
大模型应助菠萝吹雪采纳,获得10
8秒前
8秒前
tzy完成签到,获得积分10
8秒前
8秒前
爆米花应助负责的妙松采纳,获得10
9秒前
cccJF发布了新的文献求助10
9秒前
木又权发布了新的文献求助10
10秒前
穆晴朗完成签到,获得积分10
11秒前
完美世界应助小天才采纳,获得10
12秒前
12秒前
ysong97发布了新的文献求助10
12秒前
13秒前
14秒前
香蕉觅云应助懒懒洋洋洋采纳,获得10
14秒前
温婉的人雄完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977279
求助须知:如何正确求助?哪些是违规求助? 3521516
关于积分的说明 11208407
捐赠科研通 3258500
什么是DOI,文献DOI怎么找? 1799287
邀请新用户注册赠送积分活动 878142
科研通“疑难数据库(出版商)”最低求助积分说明 806800