Application of artificial neural networks to prediction of new substances with antimicrobial activity against Escherichia coli

人工神经网络 抗菌剂 生物系统 人工智能 数量结构-活动关系 回归 大肠杆菌 机器学习 集合(抽象数据类型) 线性回归 生化工程 数据集 咪唑 计算机科学 数学 化学 生物 工程类 生物化学 统计 有机化学 基因 程序设计语言
作者
Anna Badura,Jerzy Krysiński,Alicja Nowaczyk,Adam Buciński
出处
期刊:Journal of Applied Microbiology [Oxford University Press]
卷期号:130 (1): 40-49 被引量:12
标识
DOI:10.1111/jam.14763
摘要

This article presents models of artificial neural networks (ANN) employed to predict the biological activity of chemical compounds based of their structure. Regression and classification models were designed to determine antimicrobial properties of quaternary ammonium salts against Escherichia coli strain. The minimum inhibitory concentration microbial growth E. coli was experimentally determined by the serial dilution method for a series of 140 imidazole derivatives. Then, three‐dimensional models for imidazole chlorides were constructed with computational chemistry methods which allowed to calculate molecular descriptors. The transformation of chemical information into a useful number is a main result of this operation. The designed regression and classification ANN models were characterized by a high predictive ability (classification accuracy was 95%, regression model: learning set R = 0.87, testing set R = 0.91, validation set R = 0.89). Artificial neural networks can be successfully used to find potential antimicrobial preparations. The neural networks are a very elaborate modelling technique, which allows not only to optimize and minimize labour costs but also to increase food safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠醉易应助HEAUBOOK采纳,获得10
1秒前
李健的小迷弟应助HEAUBOOK采纳,获得30
1秒前
失眠醉易应助HEAUBOOK采纳,获得10
1秒前
1秒前
在水一方应助HEAUBOOK采纳,获得30
1秒前
万能图书馆应助HEAUBOOK采纳,获得10
1秒前
reflux应助HEAUBOOK采纳,获得30
1秒前
万能图书馆应助HEAUBOOK采纳,获得30
1秒前
思源应助HEAUBOOK采纳,获得30
1秒前
彭于晏应助HEAUBOOK采纳,获得30
1秒前
reflux应助HEAUBOOK采纳,获得30
1秒前
2秒前
科研通AI5应助HX采纳,获得10
3秒前
genova完成签到,获得积分10
3秒前
赫连紫发布了新的文献求助10
4秒前
5秒前
Puddingo完成签到,获得积分10
7秒前
xiaoxiao发布了新的文献求助10
8秒前
小储应助HEAUBOOK采纳,获得10
9秒前
失眠醉易应助HEAUBOOK采纳,获得10
9秒前
Lucas应助HEAUBOOK采纳,获得10
9秒前
12秒前
Narcissus完成签到,获得积分10
14秒前
17秒前
登山人发布了新的文献求助10
17秒前
长歌完成签到,获得积分10
18秒前
什么什么东西完成签到,获得积分10
20秒前
20秒前
22秒前
xxxxxxlp完成签到,获得积分10
23秒前
欣喜沛芹完成签到,获得积分10
24秒前
淡定的夏青完成签到,获得积分10
24秒前
笨笨完成签到,获得积分10
26秒前
优秀的莹发布了新的文献求助10
26秒前
酷炫醉山完成签到,获得积分10
26秒前
27秒前
Sea_U发布了新的文献求助10
27秒前
框郑完成签到 ,获得积分10
28秒前
屠夫9441完成签到 ,获得积分10
30秒前
仙贝发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742