Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland

牧场 环境科学 遥感 激光雷达 土壤肥力 土地覆盖 灌木 多光谱图像 土壤水分 农林复合经营 土地利用 土壤科学 生态学 地理 生物
作者
Joel B. Sankey,Temuulen Tsagaan Sankey,Junran Li,Sujith Ravi,Guan Wang,Joshua Caster,Alan Kasprak
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:253: 112223-112223 被引量:99
标识
DOI:10.1016/j.rse.2020.112223
摘要

Rangelands cover 70% of the world's land surface, and provide critical ecosystem services of primary production, soil carbon storage, and nutrient cycling. These ecosystem services are governed by very fine-scale spatial patterning of soil carbon, nutrients, and plant species at the centimeter-to-meter scales, a phenomenon known as "islands of fertility". Such fine-scale dynamics are challenging to detect with most satellite and manned airborne platforms. Remote sensing from unmanned aerial vehicles (UAVs) provides an alternative option for detecting fine-scale soil nutrient and plant species changes in rangelands tn0020 smaller extents. We demonstrate that a model incorporating the fusion of UAV multispectral and structure-from-motion photogrammetry classifies plant functional types and bare soil cover with an overall accuracy of 95% in rangelands degraded by shrub encroachment and disturbed by fire. We further demonstrate that employing UAV hyperspectral and LiDAR fusion greatly improves upon these results by classifying 9 different plant species and soil fertility microsite types (SFMT) with an overall accuracy of 87%. Among them, creosote bush and black grama, the most important native species in the rangeland, have the highest producer's accuracies at 98% and 94%, respectively. The integration of UAV LiDAR-derived plant height differences was critical in these improvements. Finally, we use synthesis of the UAV datasets with ground-based LiDAR surveys and lab characterization of soils to estimate that the burned rangeland potentially lost 1474 kg/ha of C and 113 kg/ha of N owing to soil erosion processes during the first year after a prescribed fire. However, during the second-year post-fire, grass and plant-interspace SFMT functioned as net sinks for sediment and nutrients and gained approximately 175 kg/ha C and 14 kg/ha N, combined. These results provide important site-specific insight that is relevant to the 423 Mha of grasslands and shrublands that are burned globally each year. While fire, and specifically post-fire erosion, can degrade some rangelands, post-fire plant-soil-nutrient dynamics might provide a competitive advantage to grasses in rangelands degraded by shrub encroachment. These novel UAV and ground-based LiDAR remote sensing approaches thus provide important details towards more accurate accounting of the carbon and nutrients in the soil surface of rangelands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助tang采纳,获得10
刚刚
爆米花应助顾北采纳,获得10
刚刚
高大迎曼完成签到,获得积分10
刚刚
1秒前
1秒前
馥芮白发布了新的文献求助10
1秒前
1秒前
林夕完成签到 ,获得积分10
1秒前
bkagyin应助清爽访曼采纳,获得10
1秒前
1秒前
2秒前
2秒前
guiguibang完成签到,获得积分10
2秒前
xxlj完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
bingchem发布了新的文献求助10
4秒前
沈佳宁完成签到,获得积分10
4秒前
4秒前
馆长应助无敌医学生采纳,获得50
4秒前
高大迎曼发布了新的文献求助10
5秒前
5秒前
肖遥发布了新的文献求助10
5秒前
LONG完成签到 ,获得积分10
5秒前
hx完成签到 ,获得积分10
6秒前
7秒前
樂楽发布了新的文献求助10
7秒前
7秒前
朴素的傲南完成签到,获得积分10
7秒前
haha发布了新的文献求助10
8秒前
夏果果发布了新的文献求助10
8秒前
juan发布了新的文献求助10
8秒前
8秒前
司徒不二发布了新的文献求助10
8秒前
奋斗的威发布了新的文献求助10
8秒前
YY完成签到 ,获得积分10
9秒前
科研通AI5应助小舀采纳,获得10
9秒前
思源应助顾北采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664