Bearing remaining useful life estimation using an adaptive data-driven model based on health state change point identification and K-means clustering

方位(导航) 计算机科学 单调函数 可靠性(半导体) 数据挖掘 鉴定(生物学) 试验数据 人工智能 可靠性工程 数学 工程类 物理 数学分析 生物 功率(物理) 程序设计语言 量子力学 植物
作者
Jaskaran Singh,Ashish K. Darpe,S. P. Singh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:31 (8): 085601-085601 被引量:44
标识
DOI:10.1088/1361-6501/ab6671
摘要

Advance prediction about bearing remaining useful life (RUL) is a major activity which aims at scheduling proper future actions to avoid catastrophic events. However, the reliability of bearing life prediction models is subject to processes, such as construction of a robust bearing degradation health index, monotonicity and trendability of health index, uncertainty in construction of a failure threshold etc. Therefore, to achieve reliable bearing RUL estimates, this study proposes a fundamental framework wherein several data driven models are trained adaptively corresponding to the different bearing health states. The core idea is to selectively identify effective bearings from the training set of bearings whose failure patterns match closely with the evolving failure pattern of a bearing under operation. In each bearing, the locations of all health state change points are identified and then the training bearings are clustered into groups having similar failure trajectories using a K-means approach and developed similarity index. The proposed approach utilizes only partial data from the test bearing for RUL prediction and eliminates the need to manually pre-define a failure threshold limit. The prediction estimates are updated with every incoming data point acquired on the test bearing until failure. A cumulative function is proposed to make the trend of the adopted health indicator (HI) into being monotonic and trendable, which is then used as an input to the data driven model. A confidence value (CV) parameter is proposed to map the inputs of the data driven model, such the CV varies in a fixed range. Both simulated data and run-to-failure experimental data (IEEE PHM 2012 bearing data) have been used to demonstrate the effectiveness of the proposed method. The test results from the proposed methodology have been benchmarked with other approaches, further validating its generic character and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
socialbot完成签到,获得积分10
刚刚
啊w完成签到 ,获得积分20
1秒前
Jiayi完成签到,获得积分10
1秒前
小波发布了新的文献求助30
1秒前
2秒前
2秒前
义气小白菜完成签到 ,获得积分10
3秒前
Hugo完成签到,获得积分10
3秒前
3秒前
俞若枫完成签到,获得积分10
4秒前
mlyy发布了新的文献求助10
5秒前
Arthur完成签到,获得积分10
5秒前
Meyako完成签到 ,获得积分10
5秒前
科研通AI5应助bin采纳,获得10
5秒前
爆米花应助11采纳,获得20
5秒前
lxlcx发布了新的文献求助10
7秒前
高源伯完成签到,获得积分10
7秒前
江筱筱完成签到,获得积分10
7秒前
拾野之苹完成签到,获得积分10
8秒前
小朱完成签到 ,获得积分10
8秒前
8秒前
是小越啊完成签到,获得积分10
9秒前
拾野之苹发布了新的文献求助10
10秒前
10秒前
11秒前
Dc发布了新的文献求助30
11秒前
糊涂的雁易应助Kannan采纳,获得10
13秒前
15秒前
umil发布了新的文献求助10
15秒前
15秒前
答不溜完成签到 ,获得积分10
15秒前
yysh1950完成签到,获得积分10
15秒前
17秒前
18秒前
LVMIN发布了新的文献求助10
19秒前
19秒前
mlyy完成签到,获得积分10
20秒前
丘比特应助kiuikiu采纳,获得10
20秒前
期待未来的自己应助生生采纳,获得10
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841