Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level

化学 拉曼光谱 人工智能 主成分分析 机器学习 模式识别(心理学) 食品科学 生物系统 计算机科学 光学 生物 物理
作者
Shuaishuai Yan,Shuying Wang,Jingxuan Qiu,Meng-Hua Li,Dezhi Li,Dongpo Xu,Daixi Li,Qing Liu
出处
期刊:Talanta [Elsevier BV]
卷期号:226: 122195-122195 被引量:102
标识
DOI:10.1016/j.talanta.2021.122195
摘要

Rapid detection of food-borne pathogens in early food contamination is a permanent topic to ensure food safety and prevent public health problems. Raman spectroscopy, a label-free, highly sensitive and dependable technology has attracted more and more attention in the field of diagnosing food-borne pathogens in recent years. In the research, 15,890 single-cell Raman spectra of 23 common strains from 7 genera were obtained at the single cell level. Then, the nonlinear features of raw data were extracted by kernel principal component analysis, and the individual bacterial cell was evaluated and discriminated at the serotype level through the decision tree algorithm. The results demonstrated that the average correct rate of prediction on independent test set was 86.23 ± 0.92% when all strains were recognized by only one model, but there were high misjudgment rates for certain strains. Therefore, the four-level classification models were introduced, and the different hierarchies of the identification models achieved accuracies in the range of 87.1%–95.8%, which realized the efficient prediction of strains at the serotype level. In summary, Raman spectroscopy combined with machine learning based on fingerprint difference was a prospective strategy for the rapid diagnosis of pathogenic bacteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldy完成签到 ,获得积分10
6秒前
冰柠发布了新的文献求助30
7秒前
11秒前
OIIII完成签到,获得积分10
11秒前
12秒前
CodeCraft应助Hohaha采纳,获得10
13秒前
hukun100完成签到,获得积分10
14秒前
Wang完成签到,获得积分10
17秒前
快乐的雨竹完成签到,获得积分10
18秒前
superhero完成签到,获得积分10
28秒前
tingalan完成签到,获得积分10
29秒前
苏苏爱学习完成签到 ,获得积分10
29秒前
30秒前
不吃芹菜完成签到,获得积分10
31秒前
32秒前
NexusExplorer应助科研通管家采纳,获得30
33秒前
ding应助科研通管家采纳,获得10
33秒前
luohan完成签到,获得积分10
35秒前
woommoow完成签到,获得积分10
36秒前
帅玉玉完成签到,获得积分10
37秒前
呀呀呀呀完成签到,获得积分10
37秒前
阿江发布了新的文献求助10
37秒前
蝈蝈完成签到,获得积分10
39秒前
yk完成签到 ,获得积分10
39秒前
会撒娇的书白完成签到 ,获得积分10
41秒前
FashionBoy应助阿江采纳,获得10
43秒前
43秒前
doclarrin完成签到 ,获得积分10
44秒前
lan完成签到 ,获得积分10
45秒前
46秒前
诸葛烤鸭完成签到,获得积分10
48秒前
无为完成签到,获得积分10
49秒前
49秒前
vva发布了新的文献求助10
51秒前
小凡凡完成签到,获得积分10
51秒前
冰柠完成签到,获得积分10
51秒前
林谷雨完成签到 ,获得积分10
53秒前
炼丹炉完成签到,获得积分10
54秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
54秒前
调皮的凝旋完成签到,获得积分10
55秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822994
求助须知:如何正确求助?哪些是违规求助? 3365558
关于积分的说明 10435610
捐赠科研通 3084494
什么是DOI,文献DOI怎么找? 1696852
邀请新用户注册赠送积分活动 816061
科研通“疑难数据库(出版商)”最低求助积分说明 769389