不确定性原理
量子特性法
相空间
维格纳分布函数
谐振子
数学
哈密顿量(控制论)
量子谐振子
广义函数
量子力学
量子
数学物理
经典力学
物理
量子过程
量子动力学
数学分析
数学优化
作者
Prathamesh Yeole,Vipul Kumar,Kaushik Bhattacharya
标识
DOI:10.1140/epjp/s13360-021-01166-9
摘要
In this paper, we generalize the concept of Wigner function in the case of quantum mechanics with a minimum length scale arising due to the application of a generalized uncertainty principle. We present the phase space formulation of such theories following GUP and show that the Weyl transform and the Wigner function satisfy most of their known properties in standard quantum mechanics. We utilize the generalized Wigner function to calculate the phase space average of the Hamiltonian of a quantum harmonic oscillator satisfying deformed Heisenberg algebra. It is also shown that averages of certain quantum mechanical operators in such theories may restrict the value of the deformation parameter specifying the degree of deformation of Heisenberg algebra. All the results presented are for pure states. The results can be generalized for mixed states.
科研通智能强力驱动
Strongly Powered by AbleSci AI