Sound Velocity Profile Prediction Method Based on RBF Neural Network

阿尔戈 人工神经网络 温盐度图 计算机科学 水下 非线性系统 径向基函数 径向基函数网络 人工智能 地质学 气象学 盐度 地理 海洋学 量子力学 物理
作者
Xiaokang Yu,Tianhe Xu,Junting Wang
出处
期刊:Lecture notes in electrical engineering 卷期号:: 475-487 被引量:2
标识
DOI:10.1007/978-981-15-3715-8_43
摘要

As a marine environmental parameter, sound velocity has an important impact on sound propagation in the ocean. In the same sea area, the sound velocity profile (SVP) changes dynamically due to the influence of marine environment, season change and other factors. To accurately obtain the SVP of seawater in time is of great significance to improve the positioning accuracy of underwater acoustic equipment for marine research and development. As the main data source of physical oceanography research, Argo data has abundant ocean hydrological observations, which provides scientific reference basis for studying ocean temperature, salt, pressure structure and spatio-temporal variation of hydrological elements. Aiming at the problem that the SVP can't be accurately obtained in time, this paper proposes a method of SVP inversion and prediction based on radial basis function (RBF) neural network. The method is based on the nonlinear function approximation capability of neural network, by using the measured temperature, salinity of the sea area and Argo data to build the sound velocity profile prediction model. The proposed SVP prediction method was verified with the Argo data of the Atlantic Ocean from 2004 to 2018. The results show that the prediction profiles based on neural network is closer to the actual SVPs that those of the average sound velocity method. Compared with error back propagation (BP) neural network, RBF neural network has the same accuracy and higher efficiency. Therefore, the SVP prediction method based on RBF neural network is more suitable for real-time or near real-time prediction of marine SVP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
希望天下0贩的0应助wise111采纳,获得10
5秒前
灰太狼大王完成签到 ,获得积分10
5秒前
守望发布了新的文献求助10
5秒前
乐唔完成签到,获得积分10
5秒前
蓝天完成签到,获得积分10
6秒前
LEON发布了新的文献求助20
7秒前
7秒前
7秒前
宋正平完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
小乖发布了新的文献求助10
10秒前
12秒前
含蓄尔竹完成签到,获得积分10
12秒前
Nancy0818完成签到 ,获得积分10
12秒前
Mly关注了科研通微信公众号
12秒前
西1发布了新的文献求助10
14秒前
星辰大海应助满意兔子采纳,获得10
15秒前
wise111发布了新的文献求助10
17秒前
splash发布了新的文献求助10
17秒前
所所应助哈哈哈采纳,获得10
18秒前
21秒前
22秒前
22秒前
田様应助函数采纳,获得30
23秒前
守望完成签到,获得积分20
23秒前
25秒前
25秒前
necos完成签到,获得积分10
26秒前
粳咪完成签到,获得积分10
26秒前
lingboxian发布了新的文献求助10
27秒前
leo发布了新的文献求助10
27秒前
美丽晓蓝发布了新的文献求助10
28秒前
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838