Effect of Hydrogen on Creep Properties of SUS304 Austenitic Stainless Steel

蠕动 材料科学 氢脆 冶金 奥氏体不锈钢 延展性(地球科学) 腐蚀 化学 有机化学
作者
Daisuke Takazaki,Toshihiro Tsuchiyama,Ryosuke Komoda,Mohsen Dadfarnia,Brian P. Somerday,Petros Athanasios Sofronis,Masanobu Kubota
出处
期刊:Corrosion [NACE International]
被引量:2
标识
DOI:10.5006/3678
摘要

The objective of this study is to derive mechanistic insight into the degradation of metals in high-temperature hydrogen in order to enable the safety of evolving hydrogen technologies that operate at elevated temperature. Creep testing was performed in argon and hydrogen gases under absolute pressure of 0.12 MPa at 873 K. The material was JIS SUS304 austenitic stainless steel. Results revealed that the creep life (time to failure) and creep ductility (strain to failure) of the SUS304 in hydrogen gas and in argon displayed opposite trends. While the creep life (time to failure) of the SUS304 in hydrogen gas was significantly shorter than that in argon, creep ductility (strain to failure) was higher in hydrogen. Associated with the relatively higher creep ductility, evidence of transgranular microvoid coalescence was more prevalent on fracture surfaces produced in hydrogen compared to those produced in argon. In addition, analysis of the steady-state creep relationships in hydrogen and argon indicated that the same creep mechanism operated in the two environments, which was deduced as dislocation creep. Regarding the mechanisms governing reduced creep life in hydrogen, the effects of decarburization, carbide formation, and the hydrogen-enhanced localized plasticity mechanism were investigated. It was confirmed that these effects were not responsible for the reduced creep life in hydrogen, at least within the creep life range of this study. Alternately, the plausible role of hydrogen was to enhance the vacancy density, which led to magnified lattice diffusion (self-diffusion) and associated dislocation climb. As a consequence, hydrogen accelerated the creep strain rate and shortened the creep life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk_yang发布了新的文献求助10
1秒前
orixero应助活泼火水采纳,获得10
2秒前
可爱的函函应助章鱼采纳,获得10
3秒前
LC发布了新的文献求助10
4秒前
小L发布了新的文献求助10
5秒前
5秒前
望尽天涯路完成签到,获得积分20
6秒前
ljty完成签到,获得积分10
6秒前
6秒前
安迪宝刚发布了新的文献求助10
7秒前
8秒前
cheer发布了新的文献求助10
9秒前
PlutoWensety发布了新的文献求助10
9秒前
潇洒甜瓜应助nannan782采纳,获得30
9秒前
always发布了新的文献求助10
10秒前
超帅的心锁完成签到,获得积分20
10秒前
端庄的电灯胆完成签到,获得积分10
12秒前
爆米花应助妮儿采纳,获得10
12秒前
12秒前
13秒前
Golding完成签到,获得积分10
14秒前
14秒前
今后应助川口督kie采纳,获得30
15秒前
铁柱威武关注了科研通微信公众号
15秒前
16秒前
毛八帝丶完成签到,获得积分10
16秒前
17秒前
sharppanda完成签到,获得积分10
17秒前
17秒前
11应助暴躁的忆丹采纳,获得20
18秒前
ddd完成签到 ,获得积分10
18秒前
18秒前
秋雪瑶应助受伤凌蝶采纳,获得10
18秒前
18秒前
初见完成签到,获得积分20
19秒前
36456657应助Zetlynn采纳,获得10
19秒前
19秒前
Hello应助消烦员采纳,获得10
19秒前
甄遥发布了新的文献求助10
19秒前
FashionBoy应助Ann采纳,获得10
20秒前
高分求助中
Formgebungs- und Stabilisierungsparameter für das Konstruktionsverfahren der FiDU-Freien Innendruckumformung von Blech 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Illustrated History of Gymnastics 800
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
The Bourse of Babylon : market quotations in the astronomical diaries of Babylonia 680
Division and square root. Digit-recurrence algorithms and implementations 500
機能營養學前瞻(3 Ed.) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2502304
求助须知:如何正确求助?哪些是违规求助? 2155982
关于积分的说明 5516829
捐赠科研通 1876601
什么是DOI,文献DOI怎么找? 933346
版权声明 563858
科研通“疑难数据库(出版商)”最低求助积分说明 498656