Top-view Trajectories: A Pedestrian Dataset of Vehicle-Crowd Interaction from Controlled Experiments and Crowded Campus

行人 计算机科学 弹道 运动(物理) 人群心理 方向(向量空间) 计算机视觉 人工智能 模拟 运输工程 工程类 数学 物理 几何学 天文
作者
Dongfang Yang,Linhui Li,Keith Redmill,Ümi̇t Özgüner
标识
DOI:10.1109/ivs.2019.8814092
摘要

Predicting the collective motion of a group of pedestrians (a crowd) under the vehicle influence is essential for the development of autonomous vehicles to deal with mixed urban scenarios where interpersonal interaction and vehicle-crowd interaction (VCI) are significant. This usually requires a model that can describe individual pedestrian motion under the influence of nearby pedestrians and the vehicle. This study proposed two pedestrian trajectory datasets, CITR dataset and DUT dataset, so that the pedestrian motion models can be further calibrated and verified, especially when vehicle influence on pedestrians plays an important role. CITR dataset consists of experimentally designed fundamental VCI scenarios (front, back, and lateral VCIs) and provides unique ID for each pedestrian, which is suitable for exploring a specific aspect of VCI. DUT dataset gives two ordinary and natural VCI scenarios in crowded university campus, which can be used for more general purpose VCI exploration. The trajectories of pedestrians, as well as vehicles, were extracted by processing video frames that come from a down-facing camera mounted on a hovering drone as the recording equipment. The final trajectories of pedestrians and vehicles were refined by Kalman filters with linear point-mass model and nonlinear bicycle model, respectively, in which xy-velocity of pedestrians and longitudinal speed and orientation of vehicles were estimated. The statistics of the velocity magnitude distribution demonstrated the validity of the proposed dataset. In total, there are approximate 340 pedestrian trajectories in CITR dataset and 1793 pedestrian trajectories in DUT dataset. The dataset is available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助甙小新采纳,获得10
刚刚
2秒前
田様应助爱学习的叭叭采纳,获得10
2秒前
chuanzhi完成签到,获得积分10
3秒前
3秒前
3秒前
自由妄想发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助20
6秒前
ZongzongXu发布了新的文献求助10
7秒前
7秒前
万能图书馆应助斯文可仁采纳,获得10
7秒前
8秒前
8秒前
9秒前
甙小新完成签到,获得积分20
9秒前
汤纪宇发布了新的文献求助10
9秒前
10秒前
10秒前
风中钥匙完成签到,获得积分10
11秒前
11秒前
琪琪发布了新的文献求助10
11秒前
FiFi完成签到 ,获得积分10
11秒前
lixiaohe908完成签到,获得积分10
12秒前
周周没烦恼完成签到,获得积分10
13秒前
夏木未央完成签到,获得积分10
13秒前
13秒前
momo完成签到,获得积分10
13秒前
Skye完成签到 ,获得积分10
14秒前
apckkk完成签到 ,获得积分10
14秒前
我是老大应助坦率凤灵采纳,获得10
14秒前
球球发布了新的文献求助10
14秒前
今后应助YuxinChen采纳,获得10
15秒前
JamesPei应助俺村俺最牛采纳,获得30
16秒前
长情的菀完成签到,获得积分10
16秒前
zzs发布了新的文献求助10
16秒前
姜忆霜完成签到 ,获得积分10
17秒前
辛勤的背包完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853559
求助须知:如何正确求助?哪些是违规求助? 4151311
关于积分的说明 12861544
捐赠科研通 3900323
什么是DOI,文献DOI怎么找? 2143164
邀请新用户注册赠送积分活动 1162935
关于科研通互助平台的介绍 1063367