WELMSD – word embedding and language model based sarcasm detection

讽刺 计算机科学 自然语言处理 人工智能 情绪分析 语言模型 分类器(UML) 文字嵌入 独创性 词(群论) 特征工程 嵌入 语言学 深度学习 心理学 讽刺 社会心理学 哲学 创造力
作者
Pradeep Kumar,Gaurav Sarin
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:46 (7): 1242-1256 被引量:14
标识
DOI:10.1108/oir-03-2021-0184
摘要

Purpose Sarcasm is a sentiment in which human beings convey messages with the opposite meanings to hurt someone emotionally or condemn something in a witty manner. The difference between the text's literal and its intended meaning makes it tough to identify. Mostly, researchers and practitioners only consider explicit information for text classification; however, considering implicit with explicit information will enhance the classifier's accuracy. Several sarcasm detection studies focus on syntactic, lexical or pragmatic features that are uttered using words, emoticons and exclamation marks. Discrete models, which are utilized by many existing works, require manual features that are costly to uncover. Design/methodology/approach In this research, word embeddings used for feature extraction are combined with context-aware language models to provide automatic feature engineering capabilities as well superior classification performance as compared to baseline models. Performance of the proposed models has been shown on three benchmark datasets over different evaluation metrics namely misclassification rate, receiver operating characteristic (ROC) curve and area under curve (AUC). Findings Experimental results suggest that FastText word embedding technique with BERT language model gives higher accuracy and helps to identify the sarcastic textual element correctly. Originality/value Sarcasm detection is a sub-task of sentiment analysis. To help in appropriate data-driven decision-making, the sentiment of the text that gets reversed due to sarcasm needs to be detected properly. In online social environments, it is critical for businesses and individuals to detect the correct sentiment polarity. This will aid in the right selling and buying of products and/or services, leading to higher sales and better market share for businesses, and meeting the quality requirements of customers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kevin发布了新的文献求助10
2秒前
星辰大海应助henzhidequxian采纳,获得10
2秒前
脑洞疼应助陈转霞采纳,获得10
2秒前
3秒前
kingfly2010完成签到,获得积分10
3秒前
小青椒应助威武的幻儿采纳,获得50
4秒前
4秒前
ling_lz完成签到,获得积分10
5秒前
5秒前
fzzf发布了新的文献求助10
5秒前
阿树不是树完成签到,获得积分10
5秒前
等人的咖啡完成签到,获得积分10
5秒前
6秒前
嗯哼完成签到 ,获得积分10
6秒前
FiroZhang完成签到,获得积分10
6秒前
星辰大海应助小v的格洛米采纳,获得10
6秒前
xiaokun发布了新的文献求助10
7秒前
7秒前
7秒前
FiroZhang发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
谜语发布了新的文献求助10
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
归尘应助科研通管家采纳,获得10
12秒前
归尘应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Zx_1993应助科研通管家采纳,获得10
12秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553