Real-Time 3D Single Object Tracking With Transformer

计算机科学 人工智能 变压器 计算机视觉 对象(语法) 视频跟踪 工程类 电气工程 电压
作者
Jiayao Shan,Sifan Zhou,Yubo Cui,Zheng Fang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2339-2353 被引量:54
标识
DOI:10.1109/tmm.2022.3146714
摘要

LiDAR-based 3D single object tracking is a challenging issue in robotics and autonomous driving. Currently, existing approaches usually suffer from the problem that objects at long distance often have very sparse or partially-occluded point clouds, which makes the features extracted by the model ambiguous. Ambiguous features will make it hard to locate the target object and finally lead to bad tracking results. To solve this problem, we utilize the powerful Transformer architecture and propose a Point-Track-Transformer (PTT) module for point cloud-based 3D single object tracking task. Specifically, PTT module generates fine-tuned attention features by computing attention weights, which guides the tracker focusing on the important features of the target and improves the tracking ability in complex scenarios. To evaluate our PTT module, we embed PTT into the dominant method and construct a novel 3D SOT tracker named PTT-Net. In PTT-Net, we embed PTT into the voting stage and proposal generation stage, respectively. PTT module in the voting stage could model the interactions among point patches, which learns context-dependent features. Meanwhile, PTT module in the proposal generation stage could capture the contextual information between object and background. We evaluate our PTT-Net on KITTI and NuScenes datasets. Experimental results demonstrate the effectiveness of PTT module and the superiority of PTT-Net, which surpasses the baseline by a noticeable margin, ~10% in the Car category. Meanwhile, our method also has a significant performance improvement in sparse scenarios. In general, the combination of transformer and tracking pipeline enables our PTT-Net to achieve state-of-the-art performance on both two datasets. Additionally, PTT-Net could run in real-time at 40FPS on NVIDIA 1080Ti GPU. Our code is open-sourced for the research community at https://github.com/shanjiayao/PTT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆芽菜发布了新的文献求助10
1秒前
搜集达人应助略略略采纳,获得10
1秒前
1秒前
1秒前
乌梅丸完成签到,获得积分10
1秒前
科目三应助长得像杨蕃采纳,获得10
2秒前
2秒前
火星上的问安完成签到,获得积分10
2秒前
kentonchow应助祁缜采纳,获得30
3秒前
ding应助laodie采纳,获得30
4秒前
幸福的秋烟完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
刘天歌发布了新的文献求助10
5秒前
QC发布了新的文献求助30
6秒前
随机昵称发布了新的文献求助30
6秒前
7秒前
7秒前
麻烦~发布了新的文献求助10
7秒前
科研人发布了新的文献求助10
7秒前
雪白凤完成签到,获得积分10
8秒前
8秒前
赘婿应助憨憨采纳,获得10
8秒前
Hq发布了新的文献求助10
8秒前
清宴发布了新的文献求助10
9秒前
平常完成签到,获得积分10
9秒前
科研通AI6应助kei采纳,获得10
9秒前
lll完成签到 ,获得积分10
9秒前
FashionBoy应助ZZZ采纳,获得10
10秒前
11秒前
11秒前
wayne发布了新的文献求助10
12秒前
CC发布了新的文献求助10
13秒前
乐乐应助饭二采纳,获得10
13秒前
烧鸭饭完成签到,获得积分10
14秒前
小蘑菇应助沉默宛筠采纳,获得30
14秒前
14秒前
Hq完成签到,获得积分10
15秒前
QC完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411695
求助须知:如何正确求助?哪些是违规求助? 4529210
关于积分的说明 14118196
捐赠科研通 4443811
什么是DOI,文献DOI怎么找? 2438424
邀请新用户注册赠送积分活动 1430709
关于科研通互助平台的介绍 1408224