Plasmon lasers at deep subwavelength scale

激光器 等离子体子 光电子学 激光阈值 光子学 材料科学 光学 纳米线 表面等离子体子 衍射 物理
作者
Rupert F. Oulton,Volker J. Sorger,Thomas Zentgraf,Ren‐Min Ma,Christopher Gladden,Lun Dai,Guy Bartal,Xiang Zhang
出处
期刊:Nature [Nature Portfolio]
卷期号:461 (7264): 629-632 被引量:2323
标识
DOI:10.1038/nature08364
摘要

To push the physical limitations of lasers to the nanoscale regime it is necessary to tackle the fundamental challenge of surpassing the diffraction limit. It has been suggested that surface plasmons — light–matter waves trapped on the surface of a conductor — can be used to tightly confine light on very short length scales, but such approaches have been previously hampered by severe losses. Oulton et al. now demonstrate that it is possible to circumvent this problem by utilizing a hybrid between a dielectric waveguide and a conducting surface supporting a plasmon mode, thereby showing the experimental realization of a nanoscale plasmonic laser with an optical mode a hundred times smaller than the diffraction limit. Such hybrid plasmonic coherent light sources offer the possibility to explore extreme interactions between light and matter, and may open important new avenues in optoelectronics. A key challenge is to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit. Surface plasmons could be used to tightly confine light on very short lengthscales, but so far this approach has been hampered by ohmic losses at optical frequencies. The experimental demonstration of nanometre-scale plasmonic lasers is now reported, realized using a hybrid plasmonic waveguide — these lasers can generate optical modes a hundred times smaller than the diffraction limit. Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources1,2,3,4,5,6,7,8,9. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals3, metal-clad cavities4 and nanowires5,6,7. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit10,11. A way of addressing this issue is to make use of surface plasmons12,13, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches14,15. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide16. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire’s exciton spontaneous emission rate by up to six times owing to the strong mode confinement17 and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits18, bio-sensing19 and quantum information technology20.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧醉冬发布了新的文献求助10
1秒前
1秒前
善学以致用应助果果糖YLJ采纳,获得10
2秒前
chenhuiwan完成签到,获得积分10
3秒前
CodeCraft应助果果糖YLJ采纳,获得10
5秒前
幸未晚完成签到,获得积分10
7秒前
7秒前
7秒前
云瑾发布了新的文献求助10
10秒前
龅牙苏完成签到,获得积分10
10秒前
武子阳完成签到 ,获得积分10
12秒前
迃幵发布了新的文献求助10
13秒前
小二郎应助认真跳跳糖采纳,获得10
16秒前
16秒前
yanzi完成签到,获得积分20
16秒前
笑点低灯泡完成签到,获得积分10
16秒前
桐桐应助561采纳,获得10
17秒前
MC123应助Camellia采纳,获得10
17秒前
yanzi发布了新的文献求助10
18秒前
19秒前
包容新蕾发布了新的文献求助10
21秒前
JamesPei应助Fighter采纳,获得10
21秒前
科目三应助vsvsgo采纳,获得30
23秒前
jingyi发布了新的文献求助10
23秒前
li完成签到,获得积分20
25秒前
果子荆完成签到,获得积分10
25秒前
啦啦啦啦完成签到 ,获得积分10
25秒前
hhh完成签到,获得积分10
26秒前
28秒前
28秒前
32秒前
朴实以丹发布了新的文献求助10
33秒前
旭辰发布了新的文献求助10
34秒前
36秒前
36秒前
37秒前
冷傲乐萱发布了新的文献求助10
39秒前
vsvsgo发布了新的文献求助30
39秒前
搜集达人应助无奈采纳,获得10
39秒前
Fighter发布了新的文献求助10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181780
求助须知:如何正确求助?哪些是违规求助? 3717892
关于积分的说明 11719634
捐赠科研通 3397786
什么是DOI,文献DOI怎么找? 1864247
邀请新用户注册赠送积分活动 922154
科研通“疑难数据库(出版商)”最低求助积分说明 833835