Information granularity-based incremental feature selection for partially labeled hybrid data

特征选择 粒度 数据挖掘 计算机科学 特征(语言学) 粗集 模式识别(心理学) 对象(语法) 人工智能 选择(遗传算法) 维数之咒 集合(抽象数据类型) 语言学 操作系统 哲学 程序设计语言
作者
Wenhao Shu,Zhenchao Yan,Ting Chen,Jianhui Yu,Wenbin Qian
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:26 (1): 33-56 被引量:5
标识
DOI:10.3233/ida-205560
摘要

Feature selection can reduce the dimensionality of data effectively. Most of the existing feature selection approaches using rough sets focus on the static single type data. However, in many real-world applications, data sets are the hybrid data including symbolic, numerical and missing features. Meanwhile, an object set in the hybrid data often changes dynamically with time. For the hybrid data, since acquiring all the decision labels of them is expensive and time-consuming, only small portion of the decision labels for the hybrid data is obtained. Therefore, in this paper, incremental feature selection algorithms based on information granularity are developed for dynamic partially labeled hybrid data with the variation of an object set. At first, the information granularity is given to measure the feature significance for partially labeled hybrid data. Then, incremental mechanisms of information granularity are proposed with the variation of an object set. On this basis, incremental feature selection algorithms with the variation of a single object and group of objects are proposed, respectively. Finally, extensive experimental results on different UCI data sets demonstrate that compared with the non-incremental feature selection algorithms, incremental feature selection algorithms can select a subset of features in shorter time without losing the classification accuracy, especially when the group of objects changes dynamically, the group incremental feature selection algorithm is more efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动漫大师发布了新的文献求助10
1秒前
丿淘丶Tao丨完成签到,获得积分10
1秒前
非而者厚应助柠檬不爱橘采纳,获得10
3秒前
4秒前
Luna发布了新的文献求助10
4秒前
kid1412完成签到 ,获得积分10
5秒前
sushx完成签到,获得积分10
8秒前
deng203发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
今后应助自信的雪糕采纳,获得10
13秒前
14秒前
单薄松鼠完成签到 ,获得积分10
15秒前
15秒前
16秒前
隐形曼青应助是我呀小夏采纳,获得10
16秒前
冰魂应助认真柠檬采纳,获得10
16秒前
十一玮完成签到,获得积分10
16秒前
小医僧发布了新的文献求助10
17秒前
bym发布了新的文献求助10
17秒前
汉堡包应助懦弱的龙猫采纳,获得30
17秒前
海鲜发布了新的文献求助10
18秒前
hoongyan完成签到 ,获得积分10
18秒前
我不到啊完成签到,获得积分10
18秒前
18秒前
19秒前
搜集达人应助黄徐采纳,获得10
19秒前
JamesPei应助彭嬇采纳,获得10
20秒前
honoruru完成签到,获得积分10
20秒前
upupup111完成签到,获得积分10
20秒前
shimhjy应助咖啡豆采纳,获得10
20秒前
暗中观察完成签到,获得积分10
21秒前
21秒前
22秒前
在水一方应助天天采纳,获得10
22秒前
JamesPei应助天天采纳,获得10
22秒前
SYLH应助756333725采纳,获得10
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785