ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics

计算机科学 利用 卷积(计算机科学) 数据挖掘 残余物 图形 维数(图论) 人工智能 算法 理论计算机科学 人工神经网络 计算机安全 数学 纯数学
作者
Guiyang Luo,Hui Zhang,Quan Yuan,Jinglin Li,Fei-Yue Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19201-19212 被引量:41
标识
DOI:10.1109/tits.2022.3167019
摘要

Accurate spatial-temporal prediction is a fundamental building block of many real-world applications such as traffic scheduling and management, environment policy making, and public safety. This problem is still challenging due to nonlinear, complicated, and dynamic spatial-temporal dependencies. To address these challenges, we propose a novel embedded spatial-temporal network (ESTNet), which extracts efficient features to model the dynamic correlations and then exploits three-dimension convolution to synchronously model the spatial-temporal dependencies. Specifically, we propose multi-range graph convolution networks for extracting multi-scale static features from the fine-grained road network. Meanwhile, dynamic features are extracted from real-time traffic using a gated recurrent unit network. These features can be applied to identify the dynamic and flexible correlations among sensors and make it possible to exploit a three-dimension convolution unit (3DCon) to simultaneously model the spatial-temporal dependencies. Furthermore, we propose a residual network by stacking multiple 3DCon to capture the nonlinear and complicated dependencies. The effectiveness and superiority of ESTNet are verified on two real-world datasets, and experiments show ESTNet outperforms the state-of-the-art with a significant margin. The code and models will be publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神仙渔完成签到,获得积分0
刚刚
曹云完成签到,获得积分20
1秒前
2秒前
3秒前
时尚纸鹤完成签到,获得积分10
3秒前
ZTH关注了科研通微信公众号
3秒前
欢喜代桃完成签到,获得积分20
3秒前
Johnlei发布了新的文献求助200
4秒前
杨杨发布了新的文献求助10
4秒前
完美世界应助HYN采纳,获得10
6秒前
芙瑞发布了新的文献求助10
7秒前
7秒前
bkagyin应助Wu采纳,获得10
8秒前
搜集达人应助三六九采纳,获得10
9秒前
传奇3应助高山我梦采纳,获得10
10秒前
科研通AI5应助985采纳,获得10
10秒前
猩猩星完成签到,获得积分10
11秒前
思源应助安安采纳,获得10
12秒前
安小野发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
feng完成签到,获得积分20
13秒前
赵泽鹏发布了新的文献求助20
13秒前
15秒前
HeiKol发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
泷岙发布了新的文献求助10
18秒前
嘉熙完成签到,获得积分10
18秒前
心落失完成签到,获得积分10
19秒前
Sherry完成签到,获得积分10
20秒前
20秒前
科研通AI5应助Guyiru采纳,获得10
20秒前
西西里柠檬完成签到,获得积分10
21秒前
高山我梦发布了新的文献求助10
21秒前
21秒前
共享精神应助安详靖柏采纳,获得10
23秒前
桐桐应助momucy采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797228
求助须知:如何正确求助?哪些是违规求助? 3342675
关于积分的说明 10312536
捐赠科研通 3059437
什么是DOI,文献DOI怎么找? 1678863
邀请新用户注册赠送积分活动 806248
科研通“疑难数据库(出版商)”最低求助积分说明 763018