Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier BV]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
737完成签到,获得积分10
刚刚
求助文献完成签到,获得积分10
刚刚
1秒前
2秒前
william发布了新的文献求助30
2秒前
737发布了新的文献求助10
3秒前
小鱼完成签到 ,获得积分10
4秒前
科研通AI5应助李卿卫采纳,获得10
4秒前
4秒前
Anhydride完成签到,获得积分10
5秒前
8秒前
CodeCraft应助jefeer采纳,获得10
8秒前
blueblue发布了新的文献求助10
9秒前
秋儿发布了新的文献求助10
9秒前
bc应助谨慎的乐天采纳,获得20
10秒前
端庄的以柳完成签到,获得积分10
12秒前
12秒前
concise完成签到 ,获得积分10
13秒前
小鱼医生完成签到 ,获得积分10
13秒前
木子成发布了新的文献求助10
13秒前
14秒前
liuchenyang完成签到,获得积分10
14秒前
桐桐应助blueblue采纳,获得10
15秒前
Hello应助Oz采纳,获得10
17秒前
马家辉完成签到,获得积分10
17秒前
ni完成签到 ,获得积分10
17秒前
18秒前
赘婿应助lc339采纳,获得10
19秒前
脑洞疼应助木子成采纳,获得10
19秒前
元谷雪发布了新的文献求助10
21秒前
田所浩二完成签到 ,获得积分10
22秒前
随行发布了新的文献求助10
22秒前
22秒前
玮哥不是伟哥完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
xhuryts完成签到,获得积分10
25秒前
qqa完成签到,获得积分10
27秒前
陈明鑫完成签到,获得积分10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385945
关于积分的说明 10543154
捐赠科研通 3106726
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774390