亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-based modeling using association rule mining to detect influential users in social networks

关联规则学习 计算机科学 数据挖掘 图形 联想(心理学) 人工智能 机器学习 数据科学 理论计算机科学 认识论 哲学
作者
Tarik Agouti
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117436-117436 被引量:11
标识
DOI:10.1016/j.eswa.2022.117436
摘要

• A proposed graph-based approach using association rule mining to detect influential users in social networks. • It includes a new diffusion-graph-based algorithm for influence maximization problem. • A new centrality measure, called completeness centrality, of identifying top nodes using all possible paths in the network. • Experimental results show the effectiveness and efficiency of our proposed measure and graph-based approach. Information diffusion is an important and attractive field of research in the area of social network analysis, and is at the heart of many studies and applications of knowledge extraction and prediction. Most of these studies have focused on identifying the most influential users and predicting user participation. Nevertheless, despite the extensive research efforts that have been made to tackle these issues, there is still a need for approaches based on association rules mining and graph theory. In this study, we contribute to research in this field by introducing a novel graph-based approach that applies association rules mining to detect influential users. We argue that users influence each other, and that it is possible to predict a user’s interests and participation based on previous interactions in the social network. We introduce new concepts and algorithms for more efficient characterization of influential users, and develop an effective approach for the discovery of influencers by using association rule techniques to extract the hidden relationships between users. To evaluate the feasibility and effectiveness of our approach, we propose a new centrality measure called the completeness centrality, and perform an evaluation based on a case study selected from the literature. We then evaluate the effectiveness of the proposed centrality measure by using the susceptible-infected-recovered model and the overlapping similarity measure. The results demonstrate that our measure is feasible and effective for use in identifying influential spreaders, based on a comparison with existing centrality measures such as degree, betweenness, closeness, and eigenvector methods. Finally, to illustrate the efficiency of our approach, experiments were run on 25 generated diffusion graphs, and the results showed that our approach could achieve a high level of performance in terms of computational time for large-scale networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
风灵发布了新的文献求助10
15秒前
37秒前
喜悦的小土豆完成签到 ,获得积分10
47秒前
howgoods完成签到 ,获得积分10
50秒前
MWY完成签到,获得积分10
58秒前
科研通AI6应助MWY采纳,获得10
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
1分钟前
Nextf1sh发布了新的文献求助10
1分钟前
青山随云走完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助小小K采纳,获得10
1分钟前
lanxinyue发布了新的文献求助10
1分钟前
nuo发布了新的文献求助10
1分钟前
林妖妖完成签到 ,获得积分10
1分钟前
1分钟前
小小K发布了新的文献求助10
2分钟前
nuo完成签到,获得积分10
2分钟前
叫我学弟完成签到 ,获得积分10
2分钟前
紧张的友灵完成签到 ,获得积分10
2分钟前
2分钟前
彩色的捕发布了新的文献求助10
3分钟前
3分钟前
林狗完成签到 ,获得积分10
3分钟前
从容芮完成签到,获得积分0
3分钟前
liang发布了新的文献求助10
3分钟前
彩色的捕完成签到,获得积分10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助liang采纳,获得10
3分钟前
3分钟前
传奇3应助1577采纳,获得10
4分钟前
4分钟前
4分钟前
1577发布了新的文献求助10
4分钟前
4分钟前
liang发布了新的文献求助10
4分钟前
4分钟前
4分钟前
liang完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480