Diabetic Macular Edema Detection Using End-to-End Deep Fusion Model and Anatomical Landmark Visualization on an Edge Computing Device

人工智能 医学 接收机工作特性 眼底(子宫) 深度学习 计算机科学 图像融合 计算机视觉 眼科 模式识别(心理学) 内科学 图像(数学)
作者
Ting-Yuan Wang,Yi‐Hao Chen,Jiann‐Torng Chen,Jung-Tzu Liu,Po-Yi Wu,Sung-Yen Chang,Ya-Wen Lee,Kuo-Chen Su,Ching‐Long Chen
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:9 被引量:20
标识
DOI:10.3389/fmed.2022.851644
摘要

Diabetic macular edema (DME) is a common cause of vision impairment and blindness in patients with diabetes. However, vision loss can be prevented by regular eye examinations during primary care. This study aimed to design an artificial intelligence (AI) system to facilitate ophthalmology referrals by physicians.We developed an end-to-end deep fusion model for DME classification and hard exudate (HE) detection. Based on the architecture of fusion model, we also applied a dual model which included an independent classifier and object detector to perform these two tasks separately. We used 35,001 annotated fundus images from three hospitals between 2007 and 2018 in Taiwan to create a private dataset. The Private dataset, Messidor-1 and Messidor-2 were used to assess the performance of the fusion model for DME classification and HE detection. A second object detector was trained to identify anatomical landmarks (optic disc and macula). We integrated the fusion model and the anatomical landmark detector, and evaluated their performance on an edge device, a device with limited compute resources.For DME classification of our private testing dataset, Messidor-1 and Messidor-2, the area under the receiver operating characteristic curve (AUC) for the fusion model had values of 98.1, 95.2, and 95.8%, the sensitivities were 96.4, 88.7, and 87.4%, the specificities were 90.1, 90.2, and 90.2%, and the accuracies were 90.8, 90.0, and 89.9%, respectively. In addition, the AUC was not significantly different for the fusion and dual models for the three datasets (p = 0.743, 0.942, and 0.114, respectively). For HE detection, the fusion model achieved a sensitivity of 79.5%, a specificity of 87.7%, and an accuracy of 86.3% using our private testing dataset. The sensitivity of the fusion model was higher than that of the dual model (p = 0.048). For optic disc and macula detection, the second object detector achieved accuracies of 98.4% (optic disc) and 99.3% (macula). The fusion model and the anatomical landmark detector can be deployed on a portable edge device.This portable AI system exhibited excellent performance for the classification of DME, and the visualization of HE and anatomical locations. It facilitates interpretability and can serve as a clinical reference for physicians. Clinically, this system could be applied to diabetic eye screening to improve the interpretation of fundus imaging in patients with DME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助终陌采纳,获得10
刚刚
刚刚
1秒前
1秒前
烈日骄阳发布了新的文献求助10
1秒前
1秒前
小蘑菇应助澎鱼盐采纳,获得10
1秒前
2秒前
2秒前
6秒前
heysiri发布了新的文献求助10
7秒前
科研通AI2S应助cc采纳,获得10
7秒前
7秒前
aaaaaawwwww完成签到,获得积分10
7秒前
LIU完成签到 ,获得积分10
8秒前
8秒前
呆萌的忆山完成签到,获得积分10
9秒前
9秒前
10秒前
小浣熊发布了新的文献求助10
10秒前
Ava应助小梁同志采纳,获得10
12秒前
Ocant发布了新的文献求助10
12秒前
终陌发布了新的文献求助10
12秒前
12秒前
RR完成签到,获得积分10
12秒前
完美的黎云给完美的黎云的求助进行了留言
13秒前
13秒前
所所应助清脆依白采纳,获得10
13秒前
14秒前
聪明的黑猫完成签到 ,获得积分10
14秒前
小杭76应助陌东绮潭采纳,获得10
15秒前
Valiant发布了新的文献求助20
15秒前
16秒前
乐观的海发布了新的文献求助10
16秒前
ikun完成签到,获得积分10
17秒前
16494864发布了新的文献求助10
17秒前
斯文败类应助heysiri采纳,获得10
18秒前
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287232
求助须知:如何正确求助?哪些是违规求助? 4439680
关于积分的说明 13822419
捐赠科研通 4321690
什么是DOI,文献DOI怎么找? 2372100
邀请新用户注册赠送积分活动 1367648
关于科研通互助平台的介绍 1331104