A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 数学分析 放大器 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier BV]
卷期号:200: 108666-108666 被引量:5
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rational完成签到,获得积分10
刚刚
Kiosta应助unicornmed采纳,获得10
刚刚
sean完成签到,获得积分10
刚刚
搞怪的白云完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
科研通AI5应助笑点低涵雁采纳,获得10
1秒前
2秒前
唯唯发布了新的文献求助10
2秒前
顾矜应助kejun采纳,获得30
2秒前
2秒前
LANGYE完成签到,获得积分20
2秒前
wenbo完成签到,获得积分10
4秒前
5秒前
5秒前
Jouleken完成签到,获得积分10
5秒前
要减肥的凡旋完成签到 ,获得积分10
5秒前
6秒前
6秒前
ANG完成签到 ,获得积分10
6秒前
汉堡包应助超级的抽屉采纳,获得10
6秒前
6秒前
清寒完成签到,获得积分10
7秒前
stupid完成签到,获得积分20
7秒前
桐桐应助LANGYE采纳,获得10
7秒前
zhang005on发布了新的文献求助10
7秒前
乐糖完成签到 ,获得积分10
8秒前
8秒前
852应助rgu采纳,获得10
8秒前
直率烤鸡完成签到,获得积分10
9秒前
爱嘤嘤嘤斯坦完成签到,获得积分10
9秒前
IOAU应助结实的慕凝采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
小马甲应助xiao采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
款款发布了新的文献求助10
10秒前
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871