Attention-based Cropping and Erasing Learning with Coarse-to-Fine Refinement for Fine-grained Visual Classification

判别式 过度拟合 计算机科学 人工智能 推论 光学(聚焦) 特征(语言学) 深度学习 机器学习 集合(抽象数据类型) 种植 模式识别(心理学)
作者
Jianpin Chen,Heng Li,Junlin Liang,Xiaofan Su,Zhenzhen Zhai,Xinyu Chai
出处
期刊:Neurocomputing [Elsevier BV]
标识
DOI:10.1016/j.neucom.2022.06.041
摘要

• Attention regions cropping and erasing data augmentation approaches are proposed for fine-grained visual classification. • A coarse-to-fine refinement strategy is proposed to refine the classification result with the defined confidence value. • Analyses of three challenging fine-grained datasets along with currently outstanding methods. • The comprehensive experimental results on three challenging FGVC datasets show the effectiveness of our approach. Fine-grained visual classification is challenging due to similarities within classes and discriminative features located in subtle regions. Conventional methods focus on extracting features from the most discriminative parts, which may underperform when these parts are occluded or invisible. And the limited training data also leads to serious overfitting problem. In this paper, we propose an Attention-based Cropping and Erasing Network (ACEN) with a coarse-to-fine refinement strategy to address these problems. By convolving the feature maps from CNN, we obtain a set of attention maps which focus on discriminative object parts. Guided by the attention maps, we propose attention region cropping and erasing operations to augment training data. Moreover, the attention region cropping enhances local discriminative feature learning, and the attention region erasing promotes multi-attention learning. During inference phase, the coarse-to-fine refinement strategy is proposed to refine the model prediction. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on challenging benchmarks, including CUB-200-2011, FGVC-Aircraft and Stanford Cars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芽衣完成签到 ,获得积分10
2秒前
2秒前
恋空完成签到 ,获得积分10
3秒前
司忆完成签到 ,获得积分10
3秒前
3秒前
沐风听雨完成签到 ,获得积分10
3秒前
4秒前
CH完成签到 ,获得积分10
4秒前
Lvy完成签到,获得积分10
4秒前
番茄黄瓜芝士片完成签到 ,获得积分10
5秒前
靓丽的熠彤完成签到,获得积分10
5秒前
嗯哼发布了新的文献求助10
5秒前
有魅力的从凝完成签到,获得积分10
6秒前
Lambisucc完成签到,获得积分10
7秒前
花小胖发布了新的文献求助10
7秒前
March完成签到,获得积分10
8秒前
Cu完成签到 ,获得积分10
8秒前
娇气的天亦完成签到,获得积分10
9秒前
高挑的听南完成签到,获得积分10
9秒前
yyyyy发布了新的文献求助10
9秒前
jcduoduo完成签到,获得积分10
9秒前
大头粽发布了新的文献求助10
9秒前
Yolo完成签到 ,获得积分10
9秒前
小王完成签到,获得积分10
10秒前
10秒前
文献完成签到 ,获得积分10
11秒前
Novice6354完成签到 ,获得积分10
12秒前
封小封完成签到,获得积分10
12秒前
小尤同学完成签到,获得积分10
13秒前
万能图书馆应助ze采纳,获得10
14秒前
linfordlu完成签到,获得积分0
14秒前
开放又亦完成签到 ,获得积分0
14秒前
正直冰露完成签到,获得积分10
15秒前
ybheart完成签到,获得积分10
18秒前
18秒前
linjunqi完成签到,获得积分10
18秒前
bkagyin应助jhp采纳,获得10
19秒前
19秒前
19秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811789
求助须知:如何正确求助?哪些是违规求助? 3356092
关于积分的说明 10379562
捐赠科研通 3073184
什么是DOI,文献DOI怎么找? 1688206
邀请新用户注册赠送积分活动 811866
科研通“疑难数据库(出版商)”最低求助积分说明 766893