Enhanced removal of organic contaminants by novel iron–carbon and premagnetization: Performance and enhancement mechanism

煅烧 电解 电化学 腐蚀 化学 废水 猝灭(荧光) 化学工程 材料科学 核化学 冶金 废物管理 电极 有机化学 催化作用 物理化学 工程类 电解质 物理 量子力学 荧光
作者
Xiang Li,Jiajia Zhang,Qin Yang,Xingli Zhang,Wei Zou,Linjie Ding,Minghua Zhou
出处
期刊:Chemosphere [Elsevier BV]
卷期号:303: 135060-135060 被引量:14
标识
DOI:10.1016/j.chemosphere.2022.135060
摘要

Iron-carbon (Fe-C) microelectrolysis has attracted considerable attention in wastewater treatment due to its excellent ability to remove contaminants. Herein, novel Fe-C granules were synthesized by simple calcination method for removing organic contaminations, and a cost-effective and environmentally friendly method, namely pre-magnetization, was used to improve the micro-electrolysis performance of Fe-C. Batch experiments proved that premagnetized iron-carbon (pre-Fe-C) could significantly improve the removal of methyl orange (MO) at different Fe-C mass ratios (1:2-2:1), material dosages (1.0-2.5 g/L), initial pH values (3.0-5.0), and MO concentrations (10.0-50.0 mg/L). Electrochemical analysis showed that premagnetization could increase the current density and reduce the charge transfer resistance of the microelectrolysis system, making Fe-C more susceptible to electrochemical corrosion. Characterizations confirmed that the corrosion products of the materials included FeO, Fe2O3, and Fe3O4, and more corrosion products were formed in the pre-Fe-C system. Radical quenching experiments and electron spin resonance spectroscopy verified that •OH, 1O2, and O2-• were all involved in pollutant removal, and premagnetization could promote the generation of more reactive oxygen species. Overall, the pre-Fe-C process could effectively remove various organic pollutants, exhibit good adaptability to complex water environments, and hold potential for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助咿呀采纳,获得10
1秒前
2秒前
ding应助qqqq采纳,获得10
3秒前
JamesPei应助qqqq采纳,获得10
3秒前
Ava应助qqqq采纳,获得10
3秒前
赘婿应助qqqq采纳,获得10
3秒前
打打应助qqqq采纳,获得10
3秒前
wanci应助qqqq采纳,获得10
3秒前
在水一方应助qqqq采纳,获得10
3秒前
深情安青应助qqqq采纳,获得10
3秒前
FashionBoy应助qqqq采纳,获得10
3秒前
隐形曼青应助qqqq采纳,获得10
3秒前
满意溪流关注了科研通微信公众号
3秒前
Owen应助尊敬不斜采纳,获得10
5秒前
在水一方应助Simonking采纳,获得10
5秒前
香蕉觅云应助炙热的白梦采纳,获得10
5秒前
科研通AI5应助xiaojian_291采纳,获得10
7秒前
8秒前
10秒前
万能图书馆应助qqqq采纳,获得10
10秒前
NexusExplorer应助qqqq采纳,获得10
10秒前
NexusExplorer应助qqqq采纳,获得10
10秒前
Lucas应助qqqq采纳,获得10
10秒前
烟花应助qqqq采纳,获得10
10秒前
善学以致用应助qqqq采纳,获得10
10秒前
李逸玄应助qqqq采纳,获得10
11秒前
CodeCraft应助qqqq采纳,获得10
11秒前
FashionBoy应助qqqq采纳,获得10
11秒前
英俊的铭应助qqqq采纳,获得10
11秒前
束之高阁发布了新的文献求助10
12秒前
12秒前
Hello应助落后的书白采纳,获得10
12秒前
北城发布了新的文献求助10
15秒前
平常的纸飞机完成签到,获得积分10
15秒前
852应助戈壁采纳,获得10
17秒前
Migtyaaron完成签到 ,获得积分10
17秒前
18秒前
20秒前
20秒前
思源应助bofu采纳,获得10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307