斯特凡问题
相似解
独特性
背景(考古学)
类型(生物学)
数学
幂函数
非线性系统
边值问题
潜热
功能(生物学)
应用数学
数学分析
边界(拓扑)
热力学
物理
边界层
古生物学
生态学
量子力学
进化生物学
生物
作者
Yang Zhou,Xia Li-jiang
标识
DOI:10.1016/j.ijheatmasstransfer.2015.01.001
摘要
A one-phase Stefan problem in which the latent heat is a power function of position with a positive exponent is investigated. The Stefan problem involves a nonlinear boundary condition of the second type. The physical rational of the problem can be found in the context of both the shoreline movement and the soil freezing process. An exact solution is constructed using the similarity transformation technique and the theory of the Kummer functions. The existence and the uniqueness of the solution are proved. Computational examples of the solution provide useful data for verifying general numerical algorithms of Stefan problems. In the end, the solution for a similar Stefan problem involving a nonlinear boundary condition of the first type is also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI