Analysis of Flight Data Using Clustering Techniques for Detecting Abnormal Operations

异常检测 聚类分析 计算机科学 数据挖掘 异常(物理) 核(代数) 星团(航天器) 人工智能 数学 物理 组合数学 程序设计语言 凝聚态物理
作者
Lishuai Li,Santanu Das,R. John Hansman,Rafael Palacios,Ashok N. Srivastava
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:12 (9): 587-598 被引量:162
标识
DOI:10.2514/1.i010329
摘要

The airline industry is moving toward proactive risk management, which aims to identify and mitigate risks before accidents occur. However, existing methods for such efforts are limited. They rely on predefined criteria to identify risks, leaving emergent issues undetected. This paper presents a new method, cluster-based anomaly detection to detect abnormal flights, which can support domain experts in detecting anomalies and associated risks from routine airline operations. The new method, enabled by data from the flight data recorder, applies clustering techniques to detect abnormal flights of unique data patterns. Compared with existing methods, the new method no longer requires predefined criteria or domain knowledge. Tests were conducted using two sets of operational data consisting of 365 B777 flights and 25,519 A320 flights. The performance of cluster-based anomaly detection to detect abnormal flights was compared with those of multiple kernel anomaly detection, which is another data-driven anomaly detection algorithm in recent years, as well as with exceedance detection, which is the current method employed by the airline industry. Results showed that both cluster-based anomaly detection to detect abnormal flights and multiple kernel anomaly detection were able to identify operationally significant anomalies, surpassing the capability of exceedance detection. Cluster-based anomaly detection to detect abnormal flights performed better with continuous parameters, whereas multiple kernel anomaly detection was more sensitive toward discrete parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助烟袅袅采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
搜集达人应助吴彦祖采纳,获得10
1秒前
sunshine完成签到 ,获得积分10
4秒前
阿媛呐完成签到,获得积分10
5秒前
6秒前
6秒前
张亚朋给张亚朋的求助进行了留言
8秒前
不想干活应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
MMMMM应助科研通管家采纳,获得30
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
嘿嘿应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
不想干活应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
MMMMM应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
11秒前
不想干活应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
核桃应助科研通管家采纳,获得10
12秒前
俭朴的跳跳糖完成签到 ,获得积分10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
熠熠生辉发布了新的文献求助10
13秒前
14秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4221600
求助须知:如何正确求助?哪些是违规求助? 3755023
关于积分的说明 11805854
捐赠科研通 3418354
什么是DOI,文献DOI怎么找? 1876242
邀请新用户注册赠送积分活动 929865
科研通“疑难数据库(出版商)”最低求助积分说明 838213