Predicting disruptive instabilities in controlled fusion plasmas through deep learning

热核聚变 托卡马克 聚变能 联合欧洲环面 等离子体 计算机科学 磁聚变 核工程 人工智能 物理 核物理学 工程类
作者
Julian Kates‐Harbeck,Alexey Svyatkovskiy,W. M. Tang
出处
期刊:Nature [Nature Portfolio]
卷期号:568 (7753): 526-531 被引量:291
标识
DOI:10.1038/s41586-019-1116-4
摘要

Nuclear fusion power delivered by magnetic-confinement tokamak reactors holds the promise of sustainable and clean energy1. The avoidance of large-scale plasma instabilities called disruptions within these reactors2,3 is one of the most pressing challenges4,5, because disruptions can halt power production and damage key components. Disruptions are particularly harmful for large burning-plasma systems such as the multibillion-dollar International Thermonuclear Experimental Reactor (ITER) project6 currently under construction, which aims to be the first reactor that produces more power from fusion than is injected to heat the plasma. Here we present a method based on deep learning for forecasting disruptions. Our method extends considerably the capabilities of previous strategies such as first-principles-based5 and classical machine-learning7–11 approaches. In particular, it delivers reliable predictions for machines other than the one on which it was trained—a crucial requirement for future large reactors that cannot afford training disruptions. Our approach takes advantage of high-dimensional training data to boost predictive performance while also engaging supercomputing resources at the largest scale to improve accuracy and speed. Trained on experimental data from the largest tokamaks in the United States (DIII-D12) and the world (Joint European Torus, JET13), our method can also be applied to specific tasks such as prediction with long warning times: this opens up the possibility of moving from passive disruption prediction to active reactor control and optimization. These initial results illustrate the potential for deep learning to accelerate progress in fusion-energy science and, more generally, in the understanding and prediction of complex physical systems. Using data from plasma-based tokamak nuclear reactors in the US and Europe, a machine-learning approach based on deep neural networks is taught to forecast disruptions, even those in machines on which the algorithm was not trained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvette完成签到 ,获得积分10
1秒前
2秒前
sunsunsun发布了新的文献求助30
3秒前
3秒前
田小冉发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
5秒前
今天发CNS了嘛完成签到,获得积分10
5秒前
6秒前
sss发布了新的文献求助10
6秒前
7秒前
7秒前
田様应助负责的烨霖采纳,获得10
8秒前
jitanxiang完成签到,获得积分10
9秒前
鹿夏之发布了新的文献求助30
10秒前
zxd发布了新的文献求助10
10秒前
11秒前
GSQ发布了新的文献求助10
11秒前
LALALA卫卫J完成签到,获得积分10
13秒前
13秒前
在水一方应助给一采纳,获得10
13秒前
殷勤的凌蝶完成签到 ,获得积分10
13秒前
14秒前
下课闹闹发布了新的文献求助10
15秒前
玉米完成签到,获得积分10
15秒前
JamesPei应助小叶子采纳,获得10
15秒前
15秒前
Z_jx完成签到,获得积分10
16秒前
小二郎应助dyq采纳,获得10
16秒前
17秒前
17秒前
小菜鸡一枚完成签到,获得积分10
17秒前
小蘑菇应助GSQ采纳,获得10
17秒前
17秒前
17秒前
13508104971发布了新的文献求助10
18秒前
18秒前
18秒前
YIDAN发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035715
求助须知:如何正确求助?哪些是违规求助? 4268736
关于积分的说明 13308145
捐赠科研通 4079502
什么是DOI,文献DOI怎么找? 2231504
邀请新用户注册赠送积分活动 1239687
关于科研通互助平台的介绍 1165600