机械加工
振动
运动学
流离失所(心理学)
GSM演进的增强数据速率
机械工程
刀具
机床
结构工程
材料科学
机械
工程类
声学
物理
经典力学
心理学
电信
心理治疗师
作者
Yixuan Feng,Fu-Chuan Hsu,Yu-Ting Lu,Yu-Fu Lin,Chia Hung Lin,Chiu‐Feng Lin,Yingcheng Lu,Steven Y. Liang
标识
DOI:10.1080/10910344.2020.1815048
摘要
The use of ultrasonic vibration on milling has several benefits including reduction of the machining forces. However, the mechanism behind this phenomenon is unclear, and reported analytical studies are quite limited. An analytical predictive modeling work is presented in the current study. To describe the intermittent contact between tool and workpiece due to vibration, conditions of tool-workpiece separation are described by three types of criteria. The first criterion checks the instantaneous moving direction of cutting edge. The second criterion examines the radial displacement of cutting edge under vibration. The third criterion considers the smaller chip thickness due to extra displacement from previous tool path. If the material is being removed, the force prediction is performed through transformation of milling configuration, calculation of shear flow stress by mechanics of machining, and calculation of feed, cutting and axial force after coordinate transformation. The predicted forces are compared with experimental measurements on Aluminum alloy 2A12 for validation. The average percentage difference is 13.6% in feed direction and 13.8% in cutting direction. This is the first approach to mathematically describe the intermittent contact between tool and workpiece and combine the kinematic analysis with mechanics of machining to predict cutting forces.
科研通智能强力驱动
Strongly Powered by AbleSci AI