A Comparative Study between Machine Learning Algorithm and Artificial Intelligence Neural Network in Detecting Minor Bearing Fault of Induction Motors

断层(地质) 方位(导航) 故障检测与隔离 人工神经网络 感应电动机 人工智能 辅修(学术) 计算机科学 算法 机器学习 工程类 电压 地震学 法学 政治学 电气工程 执行机构 地质学
作者
Shrinathan Esakimuthu Pandarakone,Yukio Mizuno,Hisahide Nakamura
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 2105-2105 被引量:61
标识
DOI:10.3390/en12112105
摘要

Most of the mechanical systems in industries are made to run through induction motors (IM). To maintain the performance of the IM, earlier detection of minor fault and continuous monitoring (CM) are required. Among IM faults, bearing faults are considered as indispensable because of its high probability incidence nature. CM mainly depends upon signal processing and fault detection techniques. In recent decades, various methods have been involved in detecting the bearing fault using machine learning (ML) algorithms. Additionally, the role of artificial intelligence (AI), a growing technology, has also been used in fault diagnosis of IM. Taking the necessity of minor fault detection and the detailed study about the role of ML and AI to detect the bearing fault, the present study is performed. A comprehensive study is conducted by considering various diagnosis methods from ML and AI for detecting a minor bearing fault (hole and scratch). This study helps in understanding the difference between the diagnosis approach and their effectiveness in detecting an IM bearing fault. It is accomplished through FFT (fast Fourier transform) analysis of the load current and the extracted features are used to train the algorithm. The application is extended by comparing the result of ML and AI, and then explaining the specific purpose of use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
ljx发布了新的文献求助10
1秒前
优秀的凡蕾完成签到,获得积分10
1秒前
笨鸟先飞完成签到 ,获得积分10
2秒前
2秒前
XJTU_jyh完成签到,获得积分10
3秒前
Lin3J发布了新的文献求助10
4秒前
干净以珊发布了新的文献求助10
4秒前
爱睡午觉完成签到,获得积分10
4秒前
5秒前
Jingshuiliushen完成签到,获得积分10
5秒前
小朱佩奇完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
虚拟的仙人掌完成签到 ,获得积分10
7秒前
8秒前
阿飞完成签到,获得积分10
8秒前
CodeCraft应助Ukiss采纳,获得10
8秒前
满意寻绿完成签到,获得积分10
8秒前
wanci应助小曾采纳,获得10
8秒前
timer完成签到,获得积分10
8秒前
9秒前
9秒前
aqiu完成签到,获得积分10
9秒前
9秒前
tfsn20完成签到,获得积分0
10秒前
10秒前
丘比特应助干净以珊采纳,获得10
10秒前
尊敬怀薇完成签到,获得积分10
10秒前
qq781208654发布了新的文献求助10
11秒前
XuXIkai发布了新的文献求助10
11秒前
12秒前
Kirin发布了新的文献求助10
12秒前
12秒前
terpyridine发布了新的文献求助10
12秒前
Preseverance完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804626
求助须知:如何正确求助?哪些是违规求助? 3349484
关于积分的说明 10344593
捐赠科研通 3065523
什么是DOI,文献DOI怎么找? 1683126
邀请新用户注册赠送积分活动 808719
科研通“疑难数据库(出版商)”最低求助积分说明 764695