生物
节点1
细胞生物学
肽聚糖
串扰
细胞质
胰岛素
受体
细菌
先天免疫系统
生物化学
节点2
内分泌学
遗传学
物理
光学
作者
Qin Zhang,Ying Pan,Benhua Zeng,Xiaojiao Zheng,Haifang Wang,Xueying Shen,Hui Li,Qian Jiang,Jiaxu Zhao,Zhuo-Xian Meng,Pingping Li,Zhengjun Chen,Hong Wei,Zhihua Liu
出处
期刊:Cell Research
[Springer Nature]
日期:2019-06-14
卷期号:29 (7): 516-532
被引量:62
标识
DOI:10.1038/s41422-019-0190-3
摘要
Long-range communication between intestinal symbiotic bacteria and extra-intestinal organs can occur through circulating bacterial signal molecules, through neural circuits, or through cytokines or hormones from host cells. Here we report that Nod1 ligands derived from intestinal bacteria act as signal molecules and directly modulate insulin trafficking in pancreatic beta cells. The cytosolic peptidoglycan receptor Nod1 and its downstream adapter Rip2 are required for insulin trafficking in beta cells in a cell-autonomous manner. Mechanistically, upon recognizing cognate ligands, Nod1 and Rip2 localize to insulin vesicles, recruiting Rab1a to direct insulin trafficking through the cytoplasm. Importantly, intestinal lysozyme liberates Nod1 ligands into the circulation, thus enabling long-range communication between intestinal microbes and islets. The intestine-islet crosstalk bridged by Nod1 ligands modulates host glucose tolerance. Our study defines a new type of inter-organ communication based on circulating bacterial signal molecules, which has broad implications for understanding the mutualistic relationship between microbes and host.
科研通智能强力驱动
Strongly Powered by AbleSci AI