警觉
驾驶模拟器
脑电图
主成分分析
计算机科学
自回归模型
光谱密度
模拟
感知
功率(物理)
人工智能
模式识别(心理学)
心理学
统计
数学
精神科
物理
电信
神经科学
量子力学
作者
Sheng‐Fu Liang,Chin‐Teng Lin,Ruochan Wu,Y.C. Chen,Tingyu Huang,Tzyy‐Ping Jung
标识
DOI:10.1109/iembs.2005.1615791
摘要
Preventing accidents caused by drowsiness behind the steering wheel is highly desirable but requires techniques for continuously estimating driver's abilities of perception, recognition and vehicle control abilities. This paper proposes methods for drowsiness estimation that combine the electroencephalogram (EEG) log subband power spectrum, correlation analysis, principal component analysis, and linear regression models to indirectly estimate driver's drowsiness level in a virtual-reality-based driving simulator. Results show that it is feasible to quantitatively monitor driver's alertness with concurrent changes in driving performance in a realistic driving simulator.
科研通智能强力驱动
Strongly Powered by AbleSci AI